OBJECTIVES: We aimed to assess the association between consumption of UPFs and risk of mortality and major CVD in a cohort from multiple world regions.
DESIGN: This analysis includes 138,076 participants without a history of CVD between the ages of 35 and 70 y living on 5 continents, with a median follow-up of 10.2 y. We used country-specific validated food-frequency questionnaires to determine individuals' food intake. We classified foods and beverages based on the NOVA classification into UPFs. The primary outcome was total mortality (CV and non-CV mortality) and secondary outcomes were incident major cardiovascular events. We calculated hazard ratios using multivariable Cox frailty models and evaluated the association of UPFs with total mortality, CV mortality, non-CV mortality, and major CVD events.
RESULTS: In this study, 9227 deaths and 7934 major cardiovascular events were recorded during the follow-up period. We found a diet high in UPFs (≥2 servings/d compared with 0 intake) was associated with higher risk of mortality (HR: 1.28; 95% CI: 1.15, 1.42; P-trend < 0.001), CV mortality (HR: 1.17; 95% CI: 0.98, 1.41; P-trend = 0.04), and non-CV mortality (HR: 1.32; 95% CI 1.17, 1.50; P-trend < 0.001). We did not find a significant association between UPF intake and risk of major CVD.
CONCLUSIONS: A diet with a high intake of UPFs was associated with a higher risk of mortality in a diverse multinational study. Globally, limiting the consumption of UPFs should be encouraged.
METHODS: The PURE study is a prospective cohort study of 127 594 adults aged 35-70 years from 20 high-income, middle-income, and low-income countries. Diet was assessed at baseline using country-specific validated food frequency questionnaires. The glycaemic index and the glycaemic load were estimated on the basis of the intake of seven categories of carbohydrate-containing foods. Participants were categorised into quintiles of glycaemic index and glycaemic load. The primary outcome was incident type 2 diabetes. Multivariable Cox Frailty models with random intercepts for study centre were used to calculate hazard ratios (HRs).
FINDINGS: During a median follow-up of 11·8 years (IQR 9·0-13·0), 7326 (5·7%) incident cases of type 2 diabetes occurred. In multivariable adjusted analyses, a diet with a higher glycaemic index was significantly associated with a higher risk of diabetes (quintile 5 vs quintile 1; HR 1·15 [95% CI 1·03-1·29]). Participants in the highest quintile of the glycaemic load had a higher risk of incident type 2 diabetes compared with those in the lowest quintile (HR 1·21, 95% CI 1·06-1·37). The glycaemic index was more strongly associated with diabetes among individuals with a higher BMI (quintile 5 vs quintile 1; HR 1·23 [95% CI 1·08-1·41]) than those with a lower BMI (quintile 5 vs quintile 1; 1·10 [0·87-1·39]; p interaction=0·030).
INTERPRETATION: Diets with a high glycaemic index and a high glycaemic load were associated with a higher risk of incident type 2 diabetes in a multinational cohort spanning five continents. Our findings suggest that consuming low glycaemic index and low glycaemic load diets might prevent the development of type 2 diabetes.
FUNDING: Full funding sources are listed at the end of the Article.
METHODS: We assessed fruit and vegetable consumption using data from country-specific, validated semi-quantitative food frequency questionnaires in the Prospective Urban Rural Epidemiology (PURE) study, which enrolled participants from communities in 18 countries between Jan 1, 2003, and Dec 31, 2013. We documented household income data from participants in these communities; we also recorded the diversity and non-sale prices of fruits and vegetables from grocery stores and market places between Jan 1, 2009, and Dec 31, 2013. We determined the cost of fruits and vegetables relative to income per household member. Linear random effects models, adjusting for the clustering of households within communities, were used to assess mean fruit and vegetable intake by their relative cost.
FINDINGS: Of 143 305 participants who reported plausible energy intake in the food frequency questionnaire, mean fruit and vegetable intake was 3·76 servings (95% CI 3·66-3·86) per day. Mean daily consumption was 2·14 servings (1·93-2·36) in low-income countries (LICs), 3·17 servings (2·99-3·35) in lower-middle-income countries (LMICs), 4·31 servings (4·09-4·53) in upper-middle-income countries (UMICs), and 5·42 servings (5·13-5·71) in high-income countries (HICs). In 130 402 participants who had household income data available, the cost of two servings of fruits and three servings of vegetables per day per individual accounted for 51·97% (95% CI 46·06-57·88) of household income in LICs, 18·10% (14·53-21·68) in LMICs, 15·87% (11·51-20·23) in UMICs, and 1·85% (-3·90 to 7·59) in HICs (ptrend=0·0001). In all regions, a higher percentage of income to meet the guidelines was required in rural areas than in urban areas (p<0·0001 for each pairwise comparison). Fruit and vegetable consumption among individuals decreased as the relative cost increased (ptrend=0·00040).
INTERPRETATION: The consumption of fruit and vegetables is low worldwide, particularly in LICs, and this is associated with low affordability. Policies worldwide should enhance the availability and affordability of fruits and vegetables.
FUNDING: Population Health Research Institute, the Canadian Institutes of Health Research, Heart and Stroke Foundation of Ontario, AstraZeneca (Canada), Sanofi-Aventis (France and Canada), Boehringer Ingelheim (Germany and Canada), Servier, GlaxoSmithKline, Novartis, King Pharma, and national or local organisations in participating countries.
METHODS: We did a prospective cohort study (Prospective Urban Rural Epidemiology [PURE] in 135 335 individuals aged 35 to 70 years without cardiovascular disease from 613 communities in 18 low-income, middle-income, and high-income countries in seven geographical regions: North America and Europe, South America, the Middle East, south Asia, China, southeast Asia, and Africa. We documented their diet using country-specific food frequency questionnaires at baseline. Standardised questionnaires were used to collect information about demographic factors, socioeconomic status (education, income, and employment), lifestyle (smoking, physical activity, and alcohol intake), health history and medication use, and family history of cardiovascular disease. The follow-up period varied based on the date when recruitment began at each site or country. The main clinical outcomes were major cardiovascular disease (defined as death from cardiovascular causes and non-fatal myocardial infarction, stroke, and heart failure), fatal and non-fatal myocardial infarction, fatal and non-fatal strokes, cardiovascular mortality, non-cardiovascular mortality, and total mortality. Cox frailty models with random effects were used to assess associations between fruit, vegetable, and legume consumption with risk of cardiovascular disease events and mortality.
FINDINGS: Participants were enrolled into the study between Jan 1, 2003, and March 31, 2013. For the current analysis, we included all unrefuted outcome events in the PURE study database through March 31, 2017. Overall, combined mean fruit, vegetable and legume intake was 3·91 (SD 2·77) servings per day. During a median 7·4 years (5·5-9·3) of follow-up, 4784 major cardiovascular disease events, 1649 cardiovascular deaths, and 5796 total deaths were documented. Higher total fruit, vegetable, and legume intake was inversely associated with major cardiovascular disease, myocardial infarction, cardiovascular mortality, non-cardiovascular mortality, and total mortality in the models adjusted for age, sex, and centre (random effect). The estimates were substantially attenuated in the multivariable adjusted models for major cardiovascular disease (hazard ratio [HR] 0·90, 95% CI 0·74-1·10, ptrend=0·1301), myocardial infarction (0·99, 0·74-1·31; ptrend=0·2033), stroke (0·92, 0·67-1·25; ptrend=0·7092), cardiovascular mortality (0·73, 0·53-1·02; ptrend=0·0568), non-cardiovascular mortality (0·84, 0·68-1·04; ptrend =0·0038), and total mortality (0·81, 0·68-0·96; ptrend<0·0001). The HR for total mortality was lowest for three to four servings per day (0·78, 95% CI 0·69-0·88) compared with the reference group, with no further apparent decrease in HR with higher consumption. When examined separately, fruit intake was associated with lower risk of cardiovascular, non-cardiovascular, and total mortality, while legume intake was inversely associated with non-cardiovascular death and total mortality (in fully adjusted models). For vegetables, raw vegetable intake was strongly associated with a lower risk of total mortality, whereas cooked vegetable intake showed a modest benefit against mortality.
INTERPRETATION: Higher fruit, vegetable, and legume consumption was associated with a lower risk of non-cardiovascular, and total mortality. Benefits appear to be maximum for both non-cardiovascular mortality and total mortality at three to four servings per day (equivalent to 375-500 g/day).
FUNDING: Full funding sources listed at the end of the paper (see Acknowledgments).