Acetylcholinesterase inhibitors (AChEIs) have become a significant target in the search for an efficient treatment of Alzheimer's disease. Chalcone-based compounds display a strong potency to hinder AChE. So, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential and their structures were characterized based on spectroscopic methods including IR, 1H NMR, 13C NMR and HRMS. Chalcone derivatives were screened against AChE. Most of them exhibited potent inhibitory activity against AChE. Compound 11i showed the most potent activity toward acetylcholinesterase compared to the positive compound, Galantamine. Docking studies into the active site of the acetylcholinesterase enzyme ravealed the significant docking score of the synthesized compounds with docking score of -7.959 to -9.277 kcal/mol when compared to the co-crystallized ligand, Donepezil (-10.567 kcal/mol). The interaction's stability was further assessed using a conventional atomistic 100 ns dynamics simulation study, which revealed the conformational stability of representative compound 11i in the cavity of the acetylcholinesterase enzyme.Communicated by Ramaswamy H. Sarma.
In response to the escalating global issue of microbial contamination, this study introduces a breakthrough photocatalyst: bismuth ferrite-activated carbon (BFO-AC) for visible light-driven disinfection, specifically targeting the Gram-positive bacterium Staphylococcus aureus (S. aureus). Employing an ultrasonication method, we synthesized various BFO-AC ratios and subjected them to comprehensive characterization. Remarkably, the bismuth ferrite-activated carbon 1:1.5 ratio (BA 1:1.5) nanocomposite exhibited the narrowest band gap of 1.86 eV. Notably, BA (1:1.5) demonstrated an exceptional BET surface area of 862.99 m2/g, a remarkable improvement compared to pristine BFO with only 27.61 m2/g. Further investigation through FE-SEM unveiled the presence of BFO nanoparticles on the activated carbon surface. Crucially, the photocatalytic efficacy of BA (1:1.5) towards S. aureus reached its zenith, achieving complete inactivation in just 60 min. TEM analysis revealed severe damage and rupture of bacterial cells, affirming the potent disinfection capabilities of BA (1:1.5). This exceptional disinfection efficiency underscores the promising potential of BA (1:1.5) for the treatment of contaminated water sources. Importantly, our results underscore the enhanced photocatalytic performance with an increased content of activated carbon, suggesting a promising avenue for more effective microorganism inactivation.