Microcystins (MCs) are secondary metabolites produced by cyanobacteria and have been well-documented in temperate and tropical regions. However, knowledge of the production of MCs in extremely cold environments is still in its infancy. Recently, examination of 100-year-old Antarctic cyanobacterial mats collected from Ross Island and the McMurdo Ice Shelf during Captain R.F. Scott's Discovery Expedition revealed that the presence of MCs in Antarctica is not a new phenomenon. Here, morphological and molecular phylogenetic analyses are used to identify a new microcystin-producing freshwater cyanobacterium, Anagnostidinema pseudacutissimum. The strain was isolated from a deep-frozen (-15 °C) sample collected from a red-brown cyanobacterial mat in a frozen pond at Cape Crozier (Ross Island, continental Antarctica) in 1984-1985. Amplification of the mcyE gene fragment involved in microcystin biosynthesis from A. pseudacutissimum confirmed that it is identical to the sequence from other known microcystin-producing cyanobacteria. Analysis of extracts from this A. pseudacutissimum strain by HPLC-MS/MS confirmed the presence of MC-LR and -YR at concentrations of 0.60 μg/L and MC-RR at concentrations of 0.20 μg/L. This is the first report of microcystin production from a species of Anagnostidinema from Antarctica.
Twenty cyanobacterial strains of eight morphospecies isolated from deep-frozen (-15 °C) mat samples originally collected on Ross Island, in Victoria Land, and on the McMurdo Ice Shelf were screened for the presence of genes encoding for production of anatoxins, cylindrospermopsin, microcystin/nodularin and saxitoxin. One strain of each of Microcoleus autumnalis and Phormidesmis priestleyi and two strains of Wilmottia murrayi were found to produce microcystin. No toxin production was detected in the other 16 strains representing five species. The four toxin-producing strains were characterised using both morphological and molecular approaches. Phylogenetic analyses using partial 16S rRNA sequences were consistent with the morphological identification of all four strains. They were all found to contain a fragment of the mcyE gene, which is involved in microcystin biosynthesis. ELISA analysis of extracts from cultures of these strains confirmed the presence of low concentrations of microcystin: 0.35 μg/L in M. autumnalis, <0.15 μg/L in P. priestleyi, 1.60 μg/L in W. murrayi strain 1 and 0.9 μg/L in W. murrayi strain 2. This study includes the first report of microcystin synthesis by W. murrayi.
Terrestrial cyanobacteria are very diverse and widely distributed in Antarctica, where they can form macroscopically visible biofilms on the surfaces of soils and rocks, and on benthic surfaces in fresh waters. We recently isolated several terrestrial cyanobacteria from soils collected on Signy Island, South Orkney Islands, Antarctica. Among them, we found a novel species of Nodosilinea, named here as Nodosilinea signiensis sp. nov. This new species is morphologically and genetically distinct from other described species. Morphological examination indicated that the new species is differentiated from others in the genus by cell size, cell shape, filament attenuation, sheath morphology and granulation. 16S rDNA phylogenetic analyses clearly confirmed that N. signiensis belongs to the genus Nodosilinea, but that it is genetically distinct from other known species of Nodosilinea. The D1-D1´ helix of the 16S-23S ITS region of the new species was also different from previously described Nodosilinea species. This is the first detailed characterization of a member of the genus Nodosilinea from Antarctica as well as being a newly described species.
This study was initiated following the serendipitous discovery of a unialgal culture of a Stichococcus-like green alga (Chlorophyta) newly isolated from soil collected on Signy Island (maritime Antarctica) in growth medium supplemented with 100 µg/mL cycloheximide (CHX, a widely used antibiotic active against most eukaryotes). In order to test the generality of CHX resistance in taxa originally identified as members of Stichococcus (the detailed taxonomic relationships within this group of algae have been updated since our study took place), six strains were studied: two strains isolated from recent substrate collections from Signy Island (maritime Antarctica) ("Antarctica" 1 and "Antarctica" 2), one isolated from this island about 50 years ago ("Antarctica" 3) and single Arctic ("Arctic"), temperate ("Temperate") and tropical ("Tropical") strains. The sensitivity of each strain towards CHX was compared by determining the minimum inhibitory concentration (MIC), and growth rate and lag time when exposed to different CHX concentrations. All strains except "Temperate" were highly resistant to CHX (MIC > 1000 µg/mL), while "Temperate" was resistant to 62.5 µg/mL (a concentration still considerably greater than any previously reported for algae). All highly resistant strains showed no significant differences in growth rate between control and treatment (1000 µg/mL CHX) conditions. Morphological examination suggested that four strains were consistent with the description of the species Stichococcus bacillaris while the remaining two conformed to S. mirabilis. However, based on sequence analyses and the recently available phylogeny, only one strain, "Temperate", was confirmed to be S. bacillaris, while "Tropical" represents the newly erected genus Tetratostichococcus, "Antarctica 1" Tritostichococcus, and "Antarctica 2", "Antarctica 3" and "Arctic" Deuterostichococcus. Both phylogenetic and CHX sensitivity analyses suggest that CHX resistance is potentially widespread within this group of algae.
Antarctica is a relatively pristine continent that attracts scientists and tourists alike. However, the risk of environmental pollution in Antarctica is increasing with the increase in the number of visitors. Recently, there has been a surge in interest regarding diesel, heavy metals and microplastics pollution. Contamination from these pollutants poses risks to the environment and the health of organisms inhabiting the continent. Penguins are one of the most prominent and widely distributed animals in Antarctica and are at major risk due to pollution. Even on a small scale, the impacts of pollution toward penguin populations are extensive. This review discusses the background of penguins in Antarctica, the anthropogenic pollution and cases, as well as the impacts of diesel, heavy metals and microplastics toxicities on penguins. The trends of the literature for the emerging risks of these pollutants are also reviewed through a bibliometric approach and network mapping analysis. A sum of 27 articles are analyzed on the effects of varying pollutants on penguins in Antarctica from 2000 to 2020 using the VOSviewer bibliometric software, Microsoft Excel and Tableau Public. Research articles collected from the Scopus database are evaluated for the most applicable research themes according to the bibliometric indicators (articles, geography distribution, annual production, integrated subject areas, key source journals and keyword or term interactions). Although bibliometric studies on the present research theme are not frequent, our results are sub-optimal due to the small number of search query matches from the Scopus database. As a result, our findings offer only a fragmentary comprehension of the topics in question. Nevertheless, this review provides valuable inputs regarding prospective research avenues for researchers to pursue in the future.
In Antarctica, human activities have been reported to be the major cause of the accumulation of heavy metal contaminants. A comprehensive bibliometric analysis of publications on heavy metal contamination in Antarctica from year 2000 to 2020 was performed to obtain an overview of the current landscape in this line of research. A total of 106 documents were obtained from Scopus, the largest citation database. Extracted data were analysed, and VOSviewer software was used to visualise trends. The result showed an increase in publications and citations in the past 20 years indicating the rising interest on heavy metal contamination in the Antarctic region. Based on the analysis of keywords, the publications largely discuss various types of heavy metals found in the Antarctic water and sediment. The analysis on subject areas detects multiple disciplines involved, wherein the environmental science was well-represented. The top countries and authors producing the most publication in this field were from Australia, China, Brazil and Chile. Numerous efforts have been exercised to investigate heavy metal pollution and its mitigation approaches in the region in the past decades. This paper not only is relevant for scholars to understand the development status and trends in this field but also offers clear insights on the future direction of Antarctic heavy metal contamination and remediation research.
One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
Research has confirmed that the utilisation of Antarctic microorganisms, such as bacteria, yeasts and fungi, in the bioremediation of diesel may provide practical alternative approaches. However, to date there has been very little attention towards Antarctic microalgae as potential hydrocarbon degraders. Therefore, this study focused on the utilisation of an Antarctic microalga in the bioremediation of diesel. The studied microalgal strain was originally obtained from a freshwater ecosystem in Paradise Bay, western Antarctic Peninsula. When analysed in systems with and without aeration, this microalgal strain achieved a higher growth rate under aeration. To maintain the growth of this microalga optimally, a conventional one-factor-at a-time (OFAT) analysis was also conducted. Based on the optimized parameters, algal growth and diesel degradation performance was highest at pH 7.5 with 0.5 mg/L NaCl concentration and 0.5 g/L of NaNO3 as a nitrogen source. This currently unidentified microalga flourished in the presence of diesel, with maximum algal cell numbers on day 7 of incubation in the presence of 1% v/v diesel. Chlorophyll a, b and carotenoid contents of the culture were greatest on day 9 of incubation. The diesel degradation achieved was 64.5% of the original concentration after 9 days. Gas chromatography analysis showed the complete mineralisation of C7-C13 hydrocarbon chains. Fourier transform infrared spectroscopy analysis confirmed that strain WCY_AQ5_3 fully degraded the hydrocarbon with bioabsorption of the products. Morphological and molecular analyses suggested that this spherical, single-celled green microalga was a member of the genus Micractinium. The data obtained confirm that this microalga is a suitable candidate for further research into the degradation of diesel in Antarctica.
The expanding urbanization of coastal areas has led to increased ocean sprawl, which has had both physical and chemical adverse effects on marine and coastal ecosystems. To maintain the health and functionality of these ecosystems, it is imperative to develop effective solutions. One such solution involves the use of biodegradable polymers as bioactive coatings to enhance the bioreceptivity of marine and coastal infrastructures. Our study aimed to explore two main objectives: (1) investigate PHA-degrading bacteria on polymer-coated surfaces and in surrounding seawater, and (2) comparing biofilm colonization between surfaces with and without the polymer coating. We applied poly(3-hydroxybutyrate) [P(3HB)) coatings on concrete surfaces at concentrations of 1% and 6% w/v, with varying numbers of coating cycles (1, 3, and 6). Our findings revealed that the addition of P(3HB) indeed promoted accelerated biofilm growth on the coated surfaces, resulting in an occupied area approximately 50% to 100% larger than that observed in the negative control. This indicates a remarkable enhancement, with the biofilm expanding at a rate roughly 1.5 to 2 times faster than the untreated surfaces. We observed noteworthy distinctions in biofilm growth patterns based on varying concentration and number of coating cycles. Interestingly, treatments with low concentration and high coating cycles exhibited comparable biofilm enhancements to those with high concentrations and low coating cycles. Further investigation into the bacterial communities responsible for the degradation of P(3HB) coatings identified mostly common and widespread strains but found no relation between the concentration and coating cycles. Nevertheless, this microbial degradation process was found to be highly efficient, manifesting noticeable effects within a single month. While these initial findings are promising, it's essential to conduct tests under natural conditions to validate the applicability of this approach. Nonetheless, our study represents a novel and bio-based ecological engineering strategy for enhancing the bioreceptivity of marine and coastal structures.
Antarctica has often been perceived as a pristine continent until the recent few decades as pollutants have been observed accruing in the Antarctic environment. Irresponsible human activities such as accidental oil spills, waste incineration and sewage disposal are among the primary anthropogenic sources of heavy metal contaminants in Antarctica. Natural sources including animal excrement, volcanism and geological weathering also contribute to the increase of heavy metals in the ecosystem. A microbial growth model is presented for the growth of a bacterial cell consortium used in the biodegradation of phenol in media containing different metal ions, namely arsenic (As), cadmium (Cd), aluminium (Al), nickel (Ni), silver (Ag), lead (Pb) and cobalt (Co). Bacterial growth was inhibited by these ions in the rank order of Al