Displaying all 5 publications

Abstract:
Sort:
  1. Meiburger KM, Acharya UR, Molinari F
    Comput Biol Med, 2018 01 01;92:210-235.
    PMID: 29247890 DOI: 10.1016/j.compbiomed.2017.11.018
    B-mode ultrasound imaging is used extensively in medicine. Hence, there is a need to have efficient segmentation tools to aid in computer-aided diagnosis, image-guided interventions, and therapy. This paper presents a comprehensive review on automated localization and segmentation techniques for B-mode ultrasound images. The paper first describes the general characteristics of B-mode ultrasound images. Then insight on the localization and segmentation of tissues is provided, both in the case in which the organ/tissue localization provides the final segmentation and in the case in which a two-step segmentation process is needed, due to the desired boundaries being too fine to locate from within the entire ultrasound frame. Subsequenly, examples of some main techniques found in literature are shown, including but not limited to shape priors, superpixel and classification, local pixel statistics, active contours, edge-tracking, dynamic programming, and data mining. Ten selected applications (abdomen/kidney, breast, cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, prostate) are then investigated in depth, and the performances of a few specific applications are compared. In conclusion, future perspectives for B-mode based segmentation, such as the integration of RF information, the employment of higher frequency probes when possible, the focus on completely automatic algorithms, and the increase in available data are discussed.
  2. Molinari F, Raghavendra U, Gudigar A, Meiburger KM, Rajendra Acharya U
    Med Biol Eng Comput, 2018 Sep;56(9):1579-1593.
    PMID: 29473126 DOI: 10.1007/s11517-018-1792-5
    Atherosclerosis is a type of cardiovascular disease which may cause stroke. It is due to the deposition of fatty plaque in the artery walls resulting in the reduction of elasticity gradually and hence restricting the blood flow to the heart. Hence, an early prediction of carotid plaque deposition is important, as it can save lives. This paper proposes a novel data mining framework for the assessment of atherosclerosis in its early stage using ultrasound images. In this work, we are using 1353 symptomatic and 420 asymptomatic carotid plaque ultrasound images. Our proposed method classifies the symptomatic and asymptomatic carotid plaques using bidimensional empirical mode decomposition (BEMD) and entropy features. The unbalanced data samples are compensated using adaptive synthetic sampling (ADASYN), and the developed method yielded a promising accuracy of 91.43%, sensitivity of 97.26%, and specificity of 83.22% using fourteen features. Hence, the proposed method can be used as an assisting tool during the regular screening of carotid arteries in hospitals. Graphical abstract Outline for our efficient data mining framework for the characterization of symptomatic and asymptomatic carotid plaques.
  3. Raghavendra U, Gudigar A, Maithri M, Gertych A, Meiburger KM, Yeong CH, et al.
    Comput Biol Med, 2018 04 01;95:55-62.
    PMID: 29455080 DOI: 10.1016/j.compbiomed.2018.02.002
    Ultrasound imaging is one of the most common visualizing tools used by radiologists to identify the location of thyroid nodules. However, visual assessment of nodules is difficult and often affected by inter- and intra-observer variabilities. Thus, a computer-aided diagnosis (CAD) system can be helpful to cross-verify the severity of nodules. This paper proposes a new CAD system to characterize thyroid nodules using optimized multi-level elongated quinary patterns. In this study, higher order spectral (HOS) entropy features extracted from these patterns appropriately distinguished benign and malignant nodules under particle swarm optimization (PSO) and support vector machine (SVM) frameworks. Our CAD algorithm achieved a maximum accuracy of 97.71% and 97.01% in private and public datasets respectively. The evaluation of this CAD system on both private and public datasets confirmed its effectiveness as a secondary tool in assisting radiological findings.
  4. Acharya UR, Raghavendra U, Koh JEW, Meiburger KM, Ciaccio EJ, Hagiwara Y, et al.
    Comput Methods Programs Biomed, 2018 Nov;166:91-98.
    PMID: 30415722 DOI: 10.1016/j.cmpb.2018.10.006
    BACKGROUND AND OBJECTIVE: Liver fibrosis is a type of chronic liver injury that is characterized by an excessive deposition of extracellular matrix protein. Early detection of liver fibrosis may prevent further growth toward liver cirrhosis and hepatocellular carcinoma. In the past, the only method to assess liver fibrosis was through biopsy, but this examination is invasive, expensive, prone to sampling errors, and may cause complications such as bleeding. Ultrasound-based elastography is a promising tool to measure tissue elasticity in real time; however, this technology requires an upgrade of the ultrasound system and software. In this study, a novel computer-aided diagnosis tool is proposed to automatically detect and classify the various stages of liver fibrosis based upon conventional B-mode ultrasound images.

    METHODS: The proposed method uses a 2D contourlet transform and a set of texture features that are efficiently extracted from the transformed image. Then, the combination of a kernel discriminant analysis (KDA)-based feature reduction technique and analysis of variance (ANOVA)-based feature ranking technique was used, and the images were then classified into various stages of liver fibrosis.

    RESULTS: Our 2D contourlet transform and texture feature analysis approach achieved a 91.46% accuracy using only four features input to the probabilistic neural network classifier, to classify the five stages of liver fibrosis. It also achieved a 92.16% sensitivity and 88.92% specificity for the same model. The evaluation was done on a database of 762 ultrasound images belonging to five different stages of liver fibrosis.

    CONCLUSIONS: The findings suggest that the proposed method can be useful to automatically detect and classify liver fibrosis, which would greatly assist clinicians in making an accurate diagnosis.

  5. Rajendra Acharya U, Meiburger KM, Wei Koh JE, Vicnesh J, Ciaccio EJ, Shu Lih O, et al.
    Artif Intell Med, 2019 09;100:101724.
    PMID: 31607348 DOI: 10.1016/j.artmed.2019.101724
    Cardiovascular diseases are the primary cause of death globally. These are often associated with atherosclerosis. This inflammation process triggers important variations in the coronary arteries (CA) and can lead to coronary artery disease (CAD). The presence of CA calcification (CAC) has recently been shown to be a strong predictor of CAD. In this clinical setting, computed tomography angiography (CTA) has begun to play a crucial role as a non-intrusive imaging method to characterize and study CA plaques. Herein, we describe an automated algorithm to classify plaque as either normal, calcified, or non-calcified using 2646 CTA images acquired from 73 patients. The automated technique is based on various features that are extracted from the Gabor transform of the acquired CTA images. Specifically, seven features are extracted from the Gabor coefficients : energy, and Kapur, Max, Rényi, Shannon, Vajda, and Yager entropies. The features were then ordered based on the F-value and input to numerous classification methods to achieve the best classification accuracy with the least number of features. Moreover, two well-known feature reduction techniques were employed, and the features acquired were also ranked according to F-value and input to several classifiers. The best classification results were obtained using all computed features without the employment of feature reduction, using a probabilistic neural network. An accuracy, positive predictive value, sensitivity, and specificity of 89.09%, 91.70%, 91.83% and 83.70% was obtained, respectively. Based on these results, it is evident that the technique can be helpful in the automated classification of plaques present in CTA images, and may become an important tool to reduce procedural costs and patient radiation dose. This could also aid clinicians in plaque diagnostics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links