Displaying all 2 publications

Abstract:
Sort:
  1. Agamuthu P, Mehran SB, Norkhairah A, Norkhairiyah A
    Waste Manag Res, 2019 Oct;37(10):987-1002.
    PMID: 31084415 DOI: 10.1177/0734242X19845041
    Marine debris, defined as any persistent manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment, has been highlighted as a contaminant of global environmental and economic concern. The five main categories of marine debris comprise of plastic, paper, metal, textile, glass and rubber. Plastics is recognised as the major constituent of marine debris, representing between 50% and 90% of the total marine debris found globally. Between 4.8 and 12.7 million metric tonnes of consumer plastics end up in the world oceans annually, resulting in the presence of more than 100 million particles of macroplastics in only 12 regional seas worldwide, and with 51 trillion particles of microplastic floating on the ocean surface globally. The impacts of marine debris can be branched out into three categories; injury to or death of marine organisms, harm to marine environment and effects on human health and economy. Marine mammals often accidentally ingest marine debris because of its appearance that can easily be mistaken as food. Moreover, floating plastics may act as vehicles for chemicals and/or environmental contaminants, which may be absorbed on to their surface during their use and permanence into the environment. Additionally, floating plastics is a potential vector for the introduction of invasive species that get attached to it, into the marine environment. In addition, human beings are not excluded from the impact of marine debris as they become exposed to microplastics through seafood consumption. Moreover, landscape degradation owing to debris accumulation is an eyesore and aesthetically unpleasant, thus resulting in decreased tourism and subsequent income loss. There are a wide range of initiatives that have been taken to tackle the issue of marine debris. They may involve manual removal of marine debris from coastal and aquatic environment in form of programmes and projects organised, such as beach clean-ups by scientific communities, non-governmental organizations and the removal of marine litter from Europe's four regional seas, respectively. Other initiatives focus on assessment, reduction, prevention and management of marine debris under the umbrella of international (the United Nations Environment Programme/Mediterranean Action Plan, the Oslo/Paris Convention) and regional organisations - that is, the Helsinki Commission. There are also a number of international conventions and national regulations that encourage mitigation and management of marine debris. However, it is argued that these initiatives are short-term unsustainable solutions and the long-term sustainable solution would be adoption of circular economy. Similarly, four of the sustainable developmental goals have targets that promote mitigation of marine debris by efficient waste management and practice of 3R. As evident by the Ad Hoc Expert Group on Marine Litter and Microplastics meeting, tackling the marine debris crisis is not a straightforward, one-size-fits-all solution, but rather an integrated and continuous effort required at local, regional and global level.
  2. Michel Devadoss PS, Agamuthu P, Mehran SB, Santha C, Fauziah SH
    Waste Manag, 2021 Jan 01;119:135-144.
    PMID: 33059163 DOI: 10.1016/j.wasman.2020.09.038
    The management of municipal solid waste (MSW) in Malaysia has been mainly focused on collection, transportation and disposal of MSW. To examine the contribution of MSW management to GHG emissions, Intergovernmental Panel on Climate Change (IPCC) 2006 Waste Model was used by deploying Tier 2 method. It estimated that 6,898,167 tonnes CO2-eq of GHG emissions were released in 2016 from solid waste disposal sites (SWDS) and are projected to increase to 9,991,486 tonnes CO2-eq in 2030. To reduce GHG emissions from MSW management, Solid-Waste-Management Greenhouse-Gas (SWM-GHG) calculator was used to compare different approaches. SWM-GHG calculator focused on three settings including recycling approach, incineration approach and integrated approach. According to SWM-GHG calculator, in 2016, 15,906,614 tonnes CO2-eq of GHG emissions were released by recycling approximately 16% of MSW and disposing of 84% of MSW in SWDS. Out of the three approaches, integrated approach can result in highest reduction of GHG emissions by 2050 (64%) from GHG emissions in 2016, as compared to recycling approach (50% reduction) and incineration approach (46% reduction). While, recycling has been the main national goal for last 14 years as it has increased up to 17.5% by 2016, the current Malaysian government aims to establish 8 incinerators in Malaysia that will treat approximately 32% of MSW annually. However, estimations of SWM-GHG calculator and some opportunities and threats highlighted by SWOT analysis suggest the integrated approach as the best suited approach for Malaysia for achieving significant and sustainable reductions in GHG emissions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links