Displaying all 4 publications

Abstract:
Sort:
  1. Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Jayant V, et al.
    Apoptosis, 2018 02;23(2):113-131.
    PMID: 29349707 DOI: 10.1007/s10495-018-1439-x
    Piperazine scaffolds or 2-azetidinone pharmacophores have been reported to show anti-cancer activities and apoptosis induction in different types of cancer cells. However, the mechanistic studies involve in induction of apoptosis addressing these two moieties for human cervical cancer cells remain uncertain. The present study emphasizes on the anti-proliferating properties and mechanism involved in induction of apoptosis for these structurally related azoles derivatives in HeLa cancer cells. 1-Phenylpiperazine clubbed with 2-azetidione derivatives (5a-5h) were synthesized, characterized using various spectroscopic techniques and evaluated for their in-vitro anti-proliferative activities and induction of apoptosis. Further, we also evaluated oxidative stress generated by these synthetic derivatives (5a-5h). Cell viability studies revealed that among all, the compound N-(3-chloro-2-(3-nitrophenyl)-4-oxoazetidin-1-yl)-2-(4-phenylpiperazin-1-yl) acetamide 5e remarkably inhibited the growth of HeLa cells in a concentration dependent manner having IC50 value of 29.44 ± 1.46 µg/ml. Morphological changes, colonies suppression and inhibition of migration clearly showed the antineoplasicity in HeLa cells treated with 5e. Simultaneously, phosphatidylserine externalization, DNA fragmentation and cell-cycle arrest showed ongoing apoptosis in the HeLa cancer cells induced by compound 5e in concentration dependent manner. Additionally, generation of intracellular ROS along with the decrease in mitochondrial membrane potential supported that compound 5e caused oxidative stress resulting in apoptosis through mitochondria mediated pathway. Elevation in the level of cytochrome c and upregulation in expression of caspase-3 clearly indicated the involvement of the intrinsic pathway of programmed cell death. In brief; compound 5e could serve as a promising lead for the development of an effective antitumor agent.
  2. Prakash P, Meena R, Stanley Abraham L, Sunkar S, Govindaraju K, Pully D, et al.
    Biocatal Agric Biotechnol, 2021 Aug;35:102056.
    PMID: 34122672 DOI: 10.1016/j.bcab.2021.102056
    The recent outbreak of COVID-19 is attributed to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This viral disease is rapidly spreading across the globe, including India. The mainstay in managing the disease is supportive care, nutrition, and preventing further progression in the absence of proven antiviral drugs. Currently two vaccines Covishield and Covaxin are administered in India. Long-term plans of developing most reliable mRNA-based vaccines are also underway for the future method of prophylaxis. The Siddha system of medicine's holistic approach emphasizes lifestyle modification, prophylactic interventions, and dietary management to boost the host immunity and treatment with herbal medicines and higher-order medicines as the case may be. In this review, a brief outline of the disease COVID-19, Coronavirus, evidence-based traditional Siddha interventions for respiratory ailments and immune boosters highlighting the relevant published research on individual herbs are dealt, which pave way for further research on drug repurposing for COVID-19. Historical evidence on the prevention and treatment of infections especially antivirals in Siddha classics is studied.
  3. Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Rajamani P, et al.
    J Cell Biochem, 2019 Feb;120(2):1651-1666.
    PMID: 30206975 DOI: 10.1002/jcb.27472
    N-benzhydrylpiperazine and 1,3,4-oxadiazoles are pharmacologically active scaffolds which exhibits significant inhibitory growth effects against various cancer cells, however, antiproliferation effects and the underlying mechanism for inducing apoptosis for aforementioned scaffolds addressing HeLa cancer cells remains uncertain. In this study, N-benzhydrylpiperazine clubbed with 1,3,4-oxadiazoles (4a-4h) were synthesized, subsequently characterized using high resolution spectroscopic techniques and eventually evaluated for their antiproliferation potential by inducing apoptosis in HeLa cancer cells. The MTT assay screening results revealed that among all, compound 4d ( N-benzhydryl-4-((5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)methyl)piperazine) in particular, exhibited IC 50 value of 28.13 ± 0.21 μg/mL and significantly inhibited the proliferation of HeLa cancer cells in concentration-dependent manner. The in vitro anticancer assays for treated HeLa cells resulted in alterations in the cell morphology, reduction in colony formation, and inhibition of cell migration in concentration-dependent treatment. Furthermore, G2/M phase arrest, variations in the nuclear morphology, degradation of chromosomal DNA confirmed the ongoing apoptosis in treated HeLa cells. Increase in the expression of cytochrome C and caspase-3 confirmed the involvement of intrinsic mitochondrial pathway regulating the cell death. Also, elevation in reactive oxygen species level and loss of mitochondrial membrane potential signified that compound 4d induced apoptosis in HeLa cells by generating the oxidative stress. Therefore, compound 4d may act as a potent chemotherapeutic agent against human cervical cancer.
  4. Meena R, Hashmi AW, Ahmad S, Iqbal F, Soni H, Meena A, et al.
    Chemosphere, 2023 Dec;343:140225.
    PMID: 37742771 DOI: 10.1016/j.chemosphere.2023.140225
    Polypropylene composites find widespread application in industries, including packaging, plastic parts, automotive, textiles, and specialized devices like living hinges known for their remarkable flexibility. This study focuses on the manufacturing of polypropylene composite specimens by incorporating varying weight percentages of fly ash particles with polypropylene using a twin-screw extruder and injection molding machine. The composites were comprehensively tested, evaluating tensile, compressive, and flexural strength, solid-state and polymer melt properties, modulus, damping, and thermal response. The findings reveal that the compressive strength of polypropylene increases up to 2 wt% of added fly ash particles and subsequently exhibits a slight decline. Tensile strength demonstrates an increase up to 1 wt% of fly ash, followed by a decrease with a 2 wt% addition, and then a subsequent increase. Flexural strength shows improvement up to 3 wt% fly ash addition before declining. The storage modulus curve is categorized into three regions: the glassy region (up to 0 °C), the glass transition region (0-50 °C), and the glass transition region of polypropylene (>50 °C), each corresponding to different molecular motions. Weight loss curves exhibit similar trends, indicating uniform pyrolysis behavior attributed to consistent chemical bonds. Plastic degradation commences around 440 °C and concludes near 550 °C. Additionally, elemental mapping of fly ash composition identified various elements such as O, Si, K, Mg, Ca, Cl, Na, P, Al, Fe, S, Cu, Ti, and Ni. These findings offer valuable insights into the mechanical and thermal properties of polypropylene composites reinforced with fly ash, rendering them suitable for a wide range of industrial applications necessitating strength and durability across temperature variations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links