Displaying all 2 publications

Abstract:
Sort:
  1. Boakes EH, Isaac NJB, Fuller RA, Mace GM, McGowan PJK
    Conserv Biol, 2018 02;32(1):229-239.
    PMID: 28678438 DOI: 10.1111/cobi.12979
    Over half of globally threatened animal species have experienced rapid geographic range loss. Identifying the parts of species' distributions most vulnerable to local extinction would benefit conservation planning. However, previous studies give little consensus on whether ranges decline to the core or edge. We built on previous work by using empirical data to examine the position of recent local extinctions within species' geographic ranges, address range position as a continuum, and explore the influence of environmental factors. We aggregated point-locality data for 125 Galliform species from across the Palearctic and Indo-Malaya into equal-area half-degree grid cells and used a multispecies dynamic Bayesian occupancy model to estimate rates of local extinctions. Our model provides a novel approach to identify loss of populations from within species ranges. We investigated the relationship between extinction rates and distance from range edge by examining whether patterns were consistent across biogeographic realm and different categories of land use. In the Palearctic, local extinctions occurred closer to the range edge than range core in both unconverted and human-dominated landscapes. In Indo-Malaya, no pattern was found for unconverted landscapes, but in human-dominated landscapes extinctions tended to occur closer to the core than the edge. Our results suggest that local and regional factors override general spatial patterns of recent local extinction within species' ranges and highlight the difficulty of predicting the parts of a species' distribution most vulnerable to threat.
  2. Grace MK, Akçakaya HR, Bennett EL, Brooks TM, Heath A, Hedges S, et al.
    Conserv Biol, 2021 12;35(6):1833-1849.
    PMID: 34289517 DOI: 10.1111/cobi.13756
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links