Displaying all 9 publications

Abstract:
Sort:
  1. Ramanathan S, McCurdy CR
    Curr Opin Psychiatry, 2020 07;33(4):312-318.
    PMID: 32452943 DOI: 10.1097/YCO.0000000000000621
    PURPOSE OF REVIEW: To inform readers about the increasingly popular Western dietary supplement, kratom (Mitragyna speciosa) and how the products are available in the Western world compared with traditional Southeast Asian use. Kratom has been traditionally used for increasing stamina of outdoor laborers (farmers), mood enhancement, pain, and opium addiction. Interestingly, kratom has been reported to have a paradoxical effect in that stimulant feelings, and sedative feelings can be obtained depending on the amount utilized. There are several biologically active alkaloids present in kratom.

    RECENT FINDINGS: Recent studies have been focused on the interactions of mitragynine, the most abundant alkaloid, and opioid-like effects. This has been driven by the harm that kratom products have produced in the Western world, in stark contrast to the lack of harm in Southeast Asian traditional use over centuries. Many users in the Western world ingest kratom for mood enhancement and/or to ween themselves from prescription or illicit opioids. Highly concentrated products and recreational use and misuse have resulted in individuals pushing doses to levels that have not been imagined or ever studied in animal, let alone humans.

    SUMMARY: Kratom, as a preparation and how it is utilized is different around the world.

  2. Sharma A, Kamble SH, León F, Chear NJ, King TI, Berthold EC, et al.
    Drug Test Anal, 2019 Aug;11(8):1162-1171.
    PMID: 30997725 DOI: 10.1002/dta.2604
    Kratom (Mitragyna speciosa) is a psychoactive plant popular in the United States for the self-treatment of pain and opioid addiction. For standardization and quality control of raw and commercial kratom products, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of ten key alkaloids, namely: corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine, mitragynine, mitraphylline, paynantheine, speciociliatine, and speciogynine. Chromatographic separation of diastereomers, or alkaloids sharing same ion transitions, was achieved on an Acquity BEH C18 column with a gradient elution using a mobile phase containing acetonitrile and aqueous ammonium acetate buffer (10mM, pH 3.5). The developed method was linear over a concentration range of 1-200 ng/mL for each alkaloid. The total analysis time per sample was 22.5 minutes. The analytical method was validated for accuracy, precision, robustness, and stability. After successful validation, the method was applied for the quantification of kratom alkaloids in alkaloid-rich fractions, ethanolic extracts, lyophilized teas, and commercial products. Mitragynine (0.7%-38.7% w/w), paynantheine (0.3%-12.8% w/w), speciociliatine (0.4%-12.3% w/w), and speciogynine (0.1%-5.3% w/w) were the major alkaloids in the analyzed kratom products/extracts. Minor kratom alkaloids (corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine) were also quantified (0.01%-2.8% w/w) in the analyzed products; however mitraphylline was below the lower limit of quantification in all analyses.
  3. Singh D, Yeou Chear NJ, Narayanan S, Leon F, Sharma A, McCurdy CR, et al.
    J Ethnopharmacol, 2020 Mar 01;249:112462.
    PMID: 31816368 DOI: 10.1016/j.jep.2019.112462
    ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa) is a native medicinal plant of Southeast Asia widely reported to be used to reduce opioid dependence and mitigate withdrawal symptoms. There is also evidence to suggest that opioid poly-drug users were using kratom to abstain from opioids.

    AIM OF THE STUDY: To determine the patterns and reasons for kratom use among current and former opioid poly-drug users in Malaysia.

    MATERIALS AND METHODS: A total of 204 opioid poly-drug users (142 current users vs. 62 former users) with current kratom use history were enrolled into this cross-sectional study. A validated UPLC-MS/MS method was used to evaluate the alkaloid content of a kratom street sample.

    RESULTS: Results from Chi-square analysis showed that there were no significant differences in demographic characteristics between current and former opioid poly-drug users except with respect to marital status. Current users had higher odds of being single (OR: 2.2: 95%CI: 1.21-4.11; p 

  4. Chiang YH, Chear NJ, Berthold EC, Kuntz MA, Kanumuri SRR, Senetra AS, et al.
    Drug Test Anal, 2024 May 15.
    PMID: 38747129 DOI: 10.1002/dta.3703
    Villocarine A is a bioactive indole alkaloid isolated from the Uncaria genus. It has demonstrated vasorelaxation activity and potential to protect the central nervous system. To identify the pharmacokinetic properties of villocarine A, a series of in vitro and in vivo studies have been performed. Villocarine A was found to be highly permeable (15.6 ± 1.6*10-6 cm/s) across human colorectal adenocarcinoma cell monolayer with high protein binding (>91%) in both rat and human plasma. Hepatic extraction ratio of villocarine A was 0.1 in pooled rat liver and 0.2 in human liver microsomes and was found stable in rat plasma at 37°C. Due to the high permeability and low rate of metabolism properties, villocarine A was initially considered suitable for preclinical development and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification (linearity: 1-150 ng/ml) in rat plasma was developed and validated for in vivo studies. Essential pharmacokinetic parameters included the volume of distribution and clearance of villocarine A, which were found to be 100.3 ± 15.6 L/kg and 8.2 ± 1.1 L/h/kg, respectively, after intravenous administration in rats. Following oral dosing, villocarine A exhibited rapid absorption as the maximum plasma concentration (53.2 ± 10.4 ng/ml) occurred at 0.3 ± 0.1 h, post-dose. The absolute oral bioavailability of villocarine A was 16.8 ± 0.1%. To our knowledge, this was the first pharmacokinetic study of villocarine A, which demonstrated the essential pharmacokinetic properties of villocarine A: large volume distribution, high clearance, and low oral bioavailability in rats.
  5. Obeng S, Kamble SH, Reeves ME, Restrepo LF, Patel A, Behnke M, et al.
    J Med Chem, 2020 01 09;63(1):433-439.
    PMID: 31834797 DOI: 10.1021/acs.jmedchem.9b01465
    Selected indole-based kratom alkaloids were evaluated for their opioid and adrenergic receptor binding and functional effects, in vivo antinociceptive effects, plasma protein binding, and metabolic stability. Mitragynine, the major alkaloid in Mitragyna speciosa (kratom), had higher affinity at opioid receptors than at adrenergic receptors while the vice versa was observed for corynantheidine. The observed polypharmacology of kratom alkaloids may support its utilization to treat opioid use disorder and withdrawal.
  6. Singh D, Narayanan S, Müller CP, Swogger MT, Chear NJY, Dzulkapli EB, et al.
    J Ethnopharmacol, 2019 Apr 06;233:34-40.
    PMID: 30594604 DOI: 10.1016/j.jep.2018.12.038
    ETHNOPHARMACOLOGICAL RELEVANCE: The leaves of Mitragyna speciosa (Korth.) or kratom have been traditionally used in Malaysia and Thailand mainly to enhance work productivity, as a folk remedy for treating common ailments, and as a mood enhancer.

    AIM OF THE STUDY: This present study sought to investigate kratom use motives among regular kratom users in Malaysia.

    MATERIALS AND METHODS: A total of 116 regular kratom users were recruited for this cross-sectional survey. The Drinking Motives Questionnaire (DMQ) was administered to measure kratom use motives.

    RESULTS: Our results indicate that heavy (>3 glasses daily, each glass contains 48.24-50.4 mg of mitragynine) kratom use was associated with coping (t87.09 =3.544, p 3 glasses daily) kratom consumption (p 3 glasses daily) kratom consumption among regular kratom users in traditional, rural settings.

  7. Prozialeck WC, Avery BA, Boyer EW, Grundmann O, Henningfield JE, Kruegel AC, et al.
    Int J Drug Policy, 2019 08;70:70-77.
    PMID: 31103778 DOI: 10.1016/j.drugpo.2019.05.003
    Kratom (Mitragyna speciosa) is a tree-like plant indigenous to Southeast Asia. Its leaves, and the teas brewed from them have long been used by people in that region to stave off fatigue and to manage pain and opioid withdrawal. Evidence suggests kratom is being increasingly used by people in the United States and Europe for the self-management of opioid withdrawal and treatment of pain. Recent studies have confirmed that kratom and its chemical constituents have potentially useful pharmacological actions. However, there have also been increasing numbers of reports of adverse effects resulting from use of kratom products. In August 2016, the US Drug Enforcement Administration announced plans to classify kratom and its mitragynine constituents as Schedule I Controlled Substances, a move that triggered a massive response from pro-kratom advocates. The debate regarding the risks, and benefits and safety of kratom continues to intensify. Kratom proponents tout kratom as a safer and less addictive alternative to opioids for the management of pain and opioid addiction. The anti-kratom faction argues that kratom, itself, is a dangerous and addictive drug that ought to be banned. Given the widespread use of kratom and the extensive media attention it is receiving, it is important for physicians, scientists and policy makers to be knowledgeable about the subject. The purpose of this commentary is to update readers about recent developments and controversies in this rapidly evolving area. All of the authors are engaged in various aspects of kratom research and it is our intention to provide a fair and balanced overview that can form the basis for informed decisions on kratom policy. Our conclusions from these analyses are: (a) User reports and results of preclinical studies in animals strongly suggest that kratom and its main constituent alkaloid, mitragynine may have useful activity in alleviating pain and managing symptoms of opioid withdrawal, even though well-controlled clinical trials have yet to be done. (b) Even though kratom lacks many of the toxicities of classic opioids, there are legitimate concerns about the safety and lack of quality control of purported "kratom" products that are being sold in the US. (c) The issues regarding the safety and efficacy of kratom and its mitragynine constituent can only be resolved by additional research. Classification of the Mitragyna alkaloids as Schedule I controlled substances would substantially impede this important research on kratom.
  8. Singh D, Brown PN, Cinosi E, Corazza O, Henningfield JE, Garcia-Romeu A, et al.
    Front Psychiatry, 2020;11:574483.
    PMID: 33324252 DOI: 10.3389/fpsyt.2020.574483
    Kratom (Mitragyna speciosa Korth., Rubiaceae) is native to and has traditional use in Southeast Asia. The number of kratom users outside of Southeast Asia has increased significantly in recent decades with use spreading to the Unites States (US) and Europe. Because of its reputed opioid-like psychoactive effects at higher doses, kratom has been regulated in several countries and is subject to an import ban by the US Food and Drug Administration. Nonetheless, in the US it is estimated that 10-15 million people consume kratom primarily for the self-treatment of pain, psychiatric disorders, to mitigate withdrawal from or dependence on opioids, and to self-treat opioid use disorder or other substance use disorders (SUDs). Due to the global COVID-19 pandemic, a shortage in the supply of kratom products may place unexpected burdens on kratom users, potentially influencing some who use kratom for SUD self-treatment to regress to harmful drug use, hence increasing the likelihood of adverse outcomes, including overdose. Inadequate treatment, treatment barriers, and increases in the sales of adulterated kratom products on the internet or in convenience stores could exacerbate circumstances further. Although there are currently no verified indications of kratom scarcity, researchers and clinicians should be aware of and remain vigilant to this unanticipated possibility.
  9. Chear NJ, León F, Sharma A, Kanumuri SRR, Zwolinski G, Abboud KA, et al.
    J Nat Prod, 2021 04 23;84(4):1034-1043.
    PMID: 33635670 DOI: 10.1021/acs.jnatprod.0c01055
    Ten indole and oxindole alkaloids (1-10) were isolated from the freshly collected leaves of Malaysian Mitragyna speciosa (Kratom). The chemical structures of these compounds were established on the basis of extensive 1D and 2D NMR and HRMS data analysis. The spectroscopic data of mitragynine oxindole B (4) are reported herein for the first time. The spatial configuration of mitragynine oxindole B (4) was confirmed by single-crystal X-ray diffraction. Simultaneous quantification of the isolated alkaloids in the M. speciosa leaf specimens collected from different locations in the northern region of Peninsular Malaysia was also performed using UPLC-MS/MS. The oxindole alkaloids (1-4) and the indole alkaloid (10) were assessed for binding affinity at opioid receptors. Corynoxine (1) showed high binding affinity to μ-opioid receptors with a Ki value of 16.4 nM. Further, corynoxine (1) was 1.8-fold more potent than morphine in rats subjected to a nociceptive hot plate assay. These findings have important implications for evaluating the combined effects of the minor oxindole alkaloids in the overall therapeutic activity of M. speciosa.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links