Displaying all 10 publications

Abstract:
Sort:
  1. Jomori T, Shiroyama S, Ise Y, Kohtsuka H, Matsuda K, Kuranaga T, et al.
    J Nat Med, 2019 Sep;73(4):814-819.
    PMID: 31054009 DOI: 10.1007/s11418-019-01315-6
    Two new steroidal saponins, scrobiculosides A and B, were isolated from the deep-sea sponge Pachastrella scrobiculosa, collected at a depth of 200 m off Miura Peninsula, Japan. The aglycones of scrobiculosides A and B feature a vinylic cyclopropane and a ∆24,25 exomethylene on the side chains, respectively. Both saponins have a common sugar moiety composed of β-D-galactopyranosyl-(1 → 2)-6-acetyl-β-D-glucopyranoside, with the exception of an acetyl group on C6″ in scrobiculoside A. Scrobiculoside A exhibited cytotoxicity against HL-60 and P388 cells, with IC50 values of 52 and 61 μM, respectively.
  2. Sakaue S, Hirata J, Kanai M, Suzuki K, Akiyama M, Lai Too C, et al.
    Nat Commun, 2020 03 26;11(1):1569.
    PMID: 32218440 DOI: 10.1038/s41467-020-15194-z
    The diversity in our genome is crucial to understanding the demographic history of worldwide populations. However, we have yet to know whether subtle genetic differences within a population can be disentangled, or whether they have an impact on complex traits. Here we apply dimensionality reduction methods (PCA, t-SNE, PCA-t-SNE, UMAP, and PCA-UMAP) to biobank-derived genomic data of a Japanese population (n = 169,719). Dimensionality reduction reveals fine-scale population structure, conspicuously differentiating adjacent insular subpopulations. We further enluciate the demographic landscape of these Japanese subpopulations using population genetics analyses. Finally, we perform phenome-wide polygenic risk score (PRS) analyses on 67 complex traits. Differences in PRS between the deconvoluted subpopulations are not always concordant with those in the observed phenotypes, suggesting that the PRS differences might reflect biases from the uncorrected structure, in a trait-dependent manner. This study suggests that such an uncorrected structure can be a potential pitfall in the clinical application of PRS.
  3. Teoh AYB, Dhir V, Kida M, Yasuda I, Jin ZD, Seo DW, et al.
    Gut, 2018 Jul;67(7):1209-1228.
    PMID: 29463614 DOI: 10.1136/gutjnl-2017-314341
    OBJECTIVES: Interventional endoscopic ultrasonography (EUS) procedures are gaining popularity and the most commonly performed procedures include EUS-guided drainage of pancreatic pseudocyst, EUS-guided biliary drainage, EUS-guided pancreatic duct drainage and EUS-guided celiac plexus ablation. The aim of this paper is to formulate a set of practice guidelines addressing various aspects of the above procedures.

    METHODS: Formulation of the guidelines was based on the best scientific evidence available. The RAND/UCLA appropriateness methodology (RAM) was used. Panellists recruited comprised experts in surgery, interventional EUS, interventional radiology and oncology from 11 countries. Between June 2014 and October 2016, the panellists met in meetings to discuss and vote on the clinical scenarios for each of the interventional EUS procedures in question.

    RESULTS: A total of 15 statements on EUS-guided drainage of pancreatic pseudocyst, 15 statements on EUS-guided biliary drainage, 12 statements on EUS-guided pancreatic duct drainage and 14 statements on EUS-guided celiac plexus ablation were formulated. The statements addressed the indications for the procedures, technical aspects, pre- and post-procedural management, management of complications, and competency and training in the procedures. All statements except one were found to be appropriate. Randomised studies to address clinical questions in a number of aspects of the procedures are urgently required.

    CONCLUSIONS: The current guidelines on interventional EUS procedures are the first published by an endoscopic society. These guidelines provide an in-depth review of the current evidence and standardise the management of the procedures.

  4. Cai Q, Zhang B, Sung H, Low SK, Kweon SS, Lu W, et al.
    Nat Genet, 2014 Aug;46(8):886-90.
    PMID: 25038754 DOI: 10.1038/ng.3041
    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified 3 genetic loci newly associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene; P=8.82×10(-9)), rs10474352 at 5q14.3 (near the ARRDC3 gene; P=1.67×10(-9)) and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene; P=4.25×10(-8)). We replicated these associations in 16,003 cases and 41,335 controls of European ancestry (P=0.030, 0.004 and 0.010, respectively). Data from the ENCODE Project suggest that variants rs4951011 and rs10474352 might be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer.
  5. Jia G, Ping J, Shu X, Yang Y, Cai Q, Kweon SS, et al.
    Am J Hum Genet, 2022 Dec 01;109(12):2185-2195.
    PMID: 36356581 DOI: 10.1016/j.ajhg.2022.10.011
    By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p 
  6. Shu X, Long J, Cai Q, Kweon SS, Choi JY, Kubo M, et al.
    Nat Commun, 2020 Mar 05;11(1):1217.
    PMID: 32139696 DOI: 10.1038/s41467-020-15046-w
    Known risk variants explain only a small proportion of breast cancer heritability, particularly in Asian women. To search for additional genetic susceptibility loci for breast cancer, here we perform a meta-analysis of data from genome-wide association studies (GWAS) conducted in Asians (24,206 cases and 24,775 controls) and European descendants (122,977 cases and 105,974 controls). We identified 31 potential novel loci with the lead variant showing an association with breast cancer risk at P 
  7. Ishigaki K, Sakaue S, Terao C, Luo Y, Sonehara K, Yamaguchi K, et al.
    Nat Genet, 2022 Nov;54(11):1640-1651.
    PMID: 36333501 DOI: 10.1038/s41588-022-01213-w
    Rheumatoid arthritis (RA) is a highly heritable complex disease with unknown etiology. Multi-ancestry genetic research of RA promises to improve power to detect genetic signals, fine-mapping resolution and performances of polygenic risk scores (PRS). Here, we present a large-scale genome-wide association study (GWAS) of RA, which includes 276,020 samples from five ancestral groups. We conducted a multi-ancestry meta-analysis and identified 124 loci (P 
  8. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al.
    Nat Genet, 2021 Jan;53(1):65-75.
    PMID: 33398198 DOI: 10.1038/s41588-020-00748-0
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
  9. Wang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, et al.
    Nat Genet, 2023 Dec;55(12):2065-2074.
    PMID: 37945903 DOI: 10.1038/s41588-023-01534-4
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links