Displaying all 4 publications

Abstract:
Sort:
  1. Kazemipoor M, Hajifaraji M, Radzi CW, Shamshirband S, Petković D, Mat Kiah ML
    Comput Methods Programs Biomed, 2015 Jan;118(1):69-76.
    PMID: 25453384 DOI: 10.1016/j.cmpb.2014.10.006
    This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes.
  2. Mat Kiah ML, Al-Bakri SH, Zaidan AA, Zaidan BB, Hussain M
    J Med Syst, 2014 Oct;38(10):133.
    PMID: 25199651 DOI: 10.1007/s10916-014-0133-y
    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.
  3. Saybani MR, Shamshirband S, Golzari S, Wah TY, Saeed A, Mat Kiah ML, et al.
    Med Biol Eng Comput, 2016 Mar;54(2-3):385-99.
    PMID: 26081904 DOI: 10.1007/s11517-015-1323-6
    Tuberculosis is a major global health problem that has been ranked as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus. Diagnosis based on cultured specimens is the reference standard; however, results take weeks to obtain. Slow and insensitive diagnostic methods hampered the global control of tuberculosis, and scientists are looking for early detection strategies, which remain the foundation of tuberculosis control. Consequently, there is a need to develop an expert system that helps medical professionals to accurately diagnose the disease. The objective of this study is to diagnose tuberculosis using a machine learning method. Artificial immune recognition system (AIRS) has been used successfully for diagnosing various diseases. However, little effort has been undertaken to improve its classification accuracy. In order to increase the classification accuracy, this study introduces a new hybrid system that incorporates real tournament selection mechanism into the AIRS. This mechanism is used to control the population size of the model and to overcome the existing selection pressure. Patient epacris reports obtained from the Pasteur laboratory in northern Iran were used as the benchmark data set. The sample consisted of 175 records, from which 114 (65 %) were positive for TB, and the remaining 61 (35 %) were negative. The classification performance was measured through tenfold cross-validation, root-mean-square error, sensitivity, and specificity. With an accuracy of 100 %, RMSE of 0, sensitivity of 100 %, and specificity of 100 %, the proposed method was able to successfully classify tuberculosis cases. In addition, the proposed method is comparable with top classifiers used in this research.
  4. Ahmed Al-Hussein W, Mat Kiah ML, Lip Yee P, Zaidan BB
    PeerJ Comput Sci, 2021;7:e632.
    PMID: 34541305 DOI: 10.7717/peerj-cs.632
    In the plan and development of Intelligent Transportation Systems (ITS), understanding drivers behaviour is considered highly valuable. Reckless driving, incompetent preventive measures, and the reliance on slow and incompetent assistance systems are attributed to the increasing rates of traffic accidents. This survey aims to review and scrutinize the literature related to sensor-based driver behaviour domain and to answer questions that are not covered so far by existing reviews. It covers the factors that are required in improving the understanding of various appropriate characteristics of this domain and outlines the common incentives, open confrontations, and imminent commendations from former researchers. Systematic scanning of the literature, from January 2014 to December 2020, mainly from four main databases, namely, IEEEXplore, ScienceDirect, Scopus and Web of Science to locate highly credible peer-reviewed articles. Amongst the 5,962 articles found, a total of 83 articles are selected based on the author's predefined inclusion and exclusion criteria. Then, a taxonomy of existing literature is presented to recognize the various aspects of this relevant research area. Common issues, motivations, and recommendations of previous studies are identified and discussed. Moreover, substantial analysis is performed to identify gaps and weaknesses in current literature and guide future researchers into planning their experiments appropriately. Finally, future directions are provided for researchers interested in driver profiling and recognition. This survey is expected to aid in emphasizing existing research prospects and create further research directions in the near future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links