In this work, a genetic algorithm is applied for the automatic detection of oil spills. The procedure is implemented using sequences from RADARSAT-2 SAR ScanSAR Narrow single-beam data acquired in the Gulf of Mexico. The study demonstrates that the implementation of crossover allows for the generation of an accurate oil spill pattern. This conclusion is confirmed by the receiver-operating characteristic (ROC) curve. The ROC curve indicates that the existence of oil slick footprints can be identified using the area between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills, and the ScanSAR Narrow single-beam mode serves as an excellent sensor for oil spill detection and survey.
RADARSAT data have a potential role for coastal pollution monitoring. This study presents a new approach to detect and forecast oil slick trajectory movements. The oil slick trajectory movements is based on the tidal current effects and Fay's algorithm for oil slick spreading mechanisms. The oil spill trajectory model contains the integration between Doppler frequency shift model and Lagrangian model. Doppler frequency shift model implemented to simulate tidal current pattern from RADARSAT data while the Lagrangian model used to predict oil spill spreading pattern. The classical Fay's algorithm was implemented with the two models to simulate the oil spill trajectory movements. The study shows that the slick lengths are effected by tidal current V component with maximum velocity of 1.4 m/s. This indicates that oil slick trajectory path is moved towards the north direction. The oil slick parcels are accumulated along the coastline after 48 h. The analysis indicated that tidal current V components were the dominant forcing for oil slick spreading.
This paper introduces a method for modification of the formula of the fractal box counting dimension. The method is based on the utilization of the probability distribution formula in the fractal box count. The purpose of this method is to use it for the discrimination of oil spill areas from the surrounding features e.g. sea surface and look-alikes in RADARSAT-1 SAR data. The result showed that the new formula of the fractal box counting dimension was able to discriminate between oil spills and look-alike areas. The low wind area had the highest fractal dimension peak of 2.9, as compared to the oil slick and the surrounding rough sea. The maximum error standard deviation of the low wind area was 0.68 which performed with a 2.9 fractal dimension value.