Displaying all 3 publications

Abstract:
Sort:
  1. Ujang Z, Wong CL, Manan ZA
    Water Sci Technol, 2002;46(11-12):77-84.
    PMID: 12523736
    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.
  2. Wan Alwi SR, Manan ZA, Samingin MH, Misran N
    J Environ Manage, 2008 Jul;88(2):219-52.
    PMID: 17449168
    Water pinch analysis (WPA) is a well-established tool for the design of a maximum water recovery (MWR) network. MWR, which is primarily concerned with water recovery and regeneration, only partly addresses water minimization problem. Strictly speaking, WPA can only lead to maximum water recovery targets as opposed to the minimum water targets as widely claimed by researchers over the years. The minimum water targets can be achieved when all water minimization options including elimination, reduction, reuse/recycling, outsourcing and regeneration have been holistically applied. Even though WPA has been well established for synthesis of MWR network, research towards holistic water minimization has lagged behind. This paper describes a new holistic framework for designing a cost-effective minimum water network (CEMWN) for industry and urban systems. The framework consists of five key steps, i.e. (1) Specify the limiting water data, (2) Determine MWR targets, (3) Screen process changes using water management hierarchy (WMH), (4) Apply Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) strategy, and (5) Design water network. Three key contributions have emerged from this work. First is a hierarchical approach for systematic screening of process changes guided by the WMH. Second is a set of four new heuristics for implementing process changes that considers the interactions among process changes options as well as among equipment and the implications of applying each process change on utility targets. Third is the SHARPS cost-screening technique to customize process changes and ultimately generate a minimum water utilization network that is cost-effective and affordable. The CEMWN holistic framework has been successfully implemented on semiconductor and mosque case studies and yielded results within the designer payback period criterion.
  3. Mohamad Dzol MAA, Balasundram V, Shameli K, Ibrahim N, Manan ZA, Isha R
    J Environ Manage, 2022 Dec 15;324:116392.
    PMID: 36208512 DOI: 10.1016/j.jenvman.2022.116392
    The main objective of the current work is to investigate the effect of nickel-waste chicken eggshell modified Hydrogen exchanged Zeolite Socony Mobil-5 (Ni-WCE/HZSM-5) on pyrolysis of high-density polyethylene (HDPE). Ni-WCE/HZSM-5 was synthesized via the impregnation incipient wetness (IWI) method with Ni and WCE mass loading of 4 and 12 wt% respectively. HZSM-5, CaO, WCE, WCE/HZSM-5, and Ni/HZSM-5 were prepared for comparison purposes with Ni-WCE/HZSM-5. All the synthesized catalysts were characterized for phase analysis, metal loading, surface morphology, and textural properties. The impregnation of nickel and WCE had significantly affected the original framework of HZSM-5, where the crystallinity percentage and average crystal size of HZSM-5 dropped to 44.97% and increased to 47.90 nm respectively. The surface morphology of HZSM-5 has drastically changed from a cubic-like shape into a spider web-like surface after the impregnation of WCE. The BET surface area of HZSM-5 has been lowered due to the impregnation of nickel and WCE, but the total pore volume has increased greatly from 0.2291 cm3/g to 0.2621 cm3/g. The catalyst performance was investigated in the pyrolysis of HDPE via a fixed bed reactor and the pyrolysis oil was further analysed to evaluate the distribution of C6 to C9> hydrocarbons. Among the tested catalytic samples, the highest pyrolysis oil yield was achieved by WCE (80%) followed by CaO (78%), WCE/HZSM-5 (63%), HZSM-5 (61%), Ni/HZSM-5 (44%) and Ni-WCE/HZSM-5 (50%). For hydrocarbon distribution in pyrolysis oil, the Ni/HZSM-5 produced the highest of total C6 and C7 hydrocarbons at 12% and 27% respectively followed by WCE/HZSM-5 (4% and 20%), non-catalytic (5% and 13%), Ni-WCE/HZSM-5 (0% and 15%), WCE (0% and 10%), HZSM-5 (0% and 6%) and CaO (0% and 0%).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links