Displaying all 16 publications

Abstract:
Sort:
  1. Mamat, M., Chan, L.
    JUMMEC, 2009;12(2):83-91.
    MyJurnal
    Patient safety is a serious global healthcare issue. Harm can be caused by a range of errors or adverse events. Therefore, it is vital that the commissioning of a new operating theatre should comply to the highest standard before it is allowed to function. This paper accounts our experience in the commissioning of the University Malaya Medical Centre (UMMC) trauma centre operating theatre(OT) complex in July 2008. We highlighted the problems we faced in adhering to the international standard guidelines. Unanticipated events were handled professionally and solved. With this experience, we hope that the identified problems would provide suggestions for commissioning an operating theatre in the local setting in the future.
  2. Abdullah, M.A.A., Mamat, M., Rusli, S.A., Kassim, A.A.
    ASM Science Journal, 2018;11(101):96-104.
    MyJurnal
    Considering its excellent thermal stability, alkyl phosphonium surfactant: triisobutyl(methyl)phosphonium
    (TIBMP) was used in this research as an intercalant for surface
    modification of Na+-MMT via ion exchange process forming organomontmorillonite
    (OMMT). The OMMT was then used as filler in poly(methyl methacrylate) (PMMA) via
    melt intercalation technique. OMMT decomposed at a higher temperature than commercial
    alkyammonium modified MMT. Exfoliated and intercalated types of nanocomposites
    are obtained from PMMA/OMMTs at low and high content of OMMT loading, depending
    on the space of those clay platelets had to disperse in PMMA. The ability of OMMT to
    carry a certain load applied in PMMA matrix enhances the tensile strength in all composites.
    TIBMP are compatible with PMMA matrix, and significantly improves the tensile
    properties of PMMA composites.
  3. Mamat, M., Abdullah, M.A.A., Jaafar, A.M., Soh, S.K.C., Lee, C.E.
    ASM Science Journal, 2018;11(101):105-113.
    MyJurnal
    As textile production flourishes nowadays, the amount of dyed wastewater entering the
    water body has also increased. Dyes could have serious negative impacts to the environment
    and also the human health, hence, they need to be removed from the water body. In this
    study, layered double hydroxide (LDH) of manganese/aluminium (MnAl) was synthesised
    to be used as a potential adsorbent to remove methyl orange (MO) dye due to its unique
    lamellar structure which provides LDH with high anion adsorption and exchange ability.
    MnAl was synthesized by using co-precipitation method and characterized by powder X-ray
    diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR), Inductively coupled
    plasma atomic emission spectroscopy (ICP-AES) and Carbon, Hydrogen, Nitrogen, Sulphur
    (CHNS) elemental analysers, and Accelerated Surface Area and Porosity Analyzer (ASAP).
    Adsorption studies were conducted at different contact times and dosages of MnAl to evaluate
    the performance of MnAl in removing MO from water. Kinetic and isotherm models were
    tested using pseudo-first order, pseudo-second order, Langmuir isotherm and Freundlich
    isotherm. MnAl LDH was found to be perfectly fitted into pseudo-second order and Langmuir
    isotherm.
  4. Yusoff, W. F. M., Sapian, A. R., Salleh, E., Adam, N. M., Hamzah, Z., Mamat, M. H. H.
    MyJurnal
    Stack ventilation in the hot and humid climate is inherently inefficient due to minimal air temperature differences between indoor and outdoor environment of a naturally ventilated building. Solar induced ventilation is a viable alternative in enhancing this stack ventilation. This paper aims to demonstrate investigations on the effective solar collector orientation and stack height for a solar induced ventilation prototype that utilizes roof solar collector and vertical stack. The orientation of the solar collector is significant as it determines the amount of solar radiation absorbed by the solar collector. Meanwhile, the height of the vertical stack influences the creation of the stack pressure in inducing air movement. Investigations were executed using a simulation modelling software called FloVENT. The validation of the simulation modelling against physical experiment indicated a good agreement between these two results. Analyses were executed on the air temperature increments inside the solar collector. A high increment of the air temperature resulted in the effective orientation. Meanwhile, the air temperature and mass flow rate of the various heights of the vertical stack were also analyzed. The findings concluded that the recommended orientation for the prototype’s solar collector is the west-facing orientation. It was also found that the higher the vertical stack, the lower the air temperature inside the stack would be, but with greater induced mass flow rate.
  5. Mamat M, Samad SA, Hannan MA
    Sensors (Basel), 2011;11(6):6435-53.
    PMID: 22163964 DOI: 10.3390/s110606435
    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results.
  6. Shariffudin SS, Mamat MH, Rusop M
    J Nanosci Nanotechnol, 2012 Oct;12(10):8165-8.
    PMID: 23421195
    Transparent nanostructured ZnO thin films were successfully deposited using sol-gel spin coating method on a quartz substrate. The 0.4 M ZnO solution gel was prepared using zinc acetate dihydrate (Zn(CH3COO)22H2O) as the precursor, 2-methoxyethanol as the solvent and monoethanolamine (MEA) as the stabilizer. The electrical and optical properties dependencies on the annealing temperature of the nanostructured ZnO thin films were investigated. It was found that as the annealing temperature increased, the particle size, conductivity and the peak of the UV emission also increased.
  7. Yunus ZM, Kamaludin DA, Mamat M, Choy YS, Ngu L
    JIMD Rep, 2012;5:99-107.
    PMID: 23430924 DOI: 10.1007/8904_2011_105
    INTRODUCTION: Maple Syrup Urine Disease (MSUD) is an autosomal recessive disorder caused by defects in the branched-chain α-ketoacid dehydrogenase complex resulting in accumulation of branched-chain amino acids (BCAAs) and corresponding branched-chain ketoacids (BCKAs) in tissues and plasma, which are neurotoxic. Early diagnosis and subsequent nutritional modification management can reduce the morbidity and mortality. Prior to 1990s, the diagnosis of MSUD and other inborn errors of metabolism (IEM) in Malaysia were merely based on clinical suspicion and qualitative one-dimensional thin layer chromatography technique. We have successfully established specific laboratory diagnostic techniques to diagnose MSUD and other IEM. We described here our experience in performing high-risk screening for IEM in Malaysia from 1999 to 2006. We analysed the clinical and biochemical profiles of 25 patients with MSUD.

    METHODS: A total of 12,728 plasma and urine samples from patients suspected of having IEM were received from physicians all over Malaysia. Plasma amino acids quantitation using fully automated amino acid analyzer and identification of urinary organic acids using Gas Chromatography Mass Spectrometry (GCMS). Patients' clinical information were obtained from the request forms and case records Results: Twenty-five patients were diagnosed MSUD. Nineteen patients (76%) were affected by classical MSUD, whereas six patients had non-classical MSUD. Delayed diagnosis was common among our case series, and 80% of patients had survived with treatment with mild-to-moderate learning difficulties.

    CONCLUSION: Our findings suggested that MSUD is not uncommon in Malaysia especially among the Malay and early laboratory diagnosis is crucial.

  8. Ahmad R, Salina M, Mamat MH, Teh AA, Kara M, Rusop M, et al.
    J Nanosci Nanotechnol, 2012 Oct;12(10):8153-7.
    PMID: 23421193
    This paper addresses the growth of nano-structured MgZnO thin films by sol-gel spin coating method which will be used as a template layer to grow carbon nanotubes. The nano-structured MgZnO films were deposited on platinized (100) silicon substrates. In this work, we focused on the effect of aging and Mg content on the film structure and resistivity. Sols with Mg content of 10, 30 and 50 at.% were subjected to aging times of between 3 to 240 hours. Results from scanning (SEM) and field emission scanning electron (FESEM) microscopes and surface profiler (SP) showed that the sol aging increased the thickness, grain size and surface roughness for aging up to 240 hours. The energy dispersive analysis by X-ray (EDAX) confirmed the element of Mg in the ZnO films. The electrical resistivity also increased with aging time as confirmed by four point probe method. The results suggest that appropriate aging of the sol is important for improving physical quality and electrical performance of MgZnO thin films derived from sol-gel technique.
  9. Owoyemi AE, Sulaiman IM, Kumar P, Govindaraj V, Mamat M
    Math Methods Appl Sci, 2022 Oct 04.
    PMID: 36714679 DOI: 10.1002/mma.8772
    Since December 2019, the whole world has been facing the big challenge of Covid-19 or 2019-nCoV. Some nations have controlled or are controlling the spread of this virus strongly, but some countries are in big trouble because of their poor control strategies. Nowadays, mathematical models are very effective tools to simulate outbreaks of this virus. In this research, we analyze a fractional-order model of Covid-19 in terms of the Caputo fractional derivative. First, we generalize an integer-order model to a fractional sense, and then, we check the stability of equilibrium points. To check the dynamics of Covid-19, we plot several graphs on the time scale of daily and monthly cases. The main goal of this content is to show the effectiveness of fractional-order models as compared to integer-order dynamics.
  10. Ahmad A, Razali MH, Mamat M, Mehamod FS, Anuar Mat Amin K
    Chemosphere, 2017 Feb;168:474-482.
    PMID: 27855344 DOI: 10.1016/j.chemosphere.2016.11.028
    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO2. Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO2 nanoparticles onto functionalized-CNTs loaded TiO2, with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium.
  11. Abidin NZ, Mamat M, Dangerfield B, Zulkepli JH, Baten MA, Wibowo A
    PLoS One, 2014;9(12):e114135.
    PMID: 25502170 DOI: 10.1371/journal.pone.0114135
    Poor eating behavior has been identified as one of the core contributory factors of the childhood obesity epidemic. The consequences of obesity on numerous aspects of life are thoroughly explored in the existing literature. For instance, evidence shows that obesity is linked to incidences of diseases such as heart disease, type-2 diabetes, and some cancers, as well as psychosocial problems. To respond to the increasing trends in the UK, in 2008 the government set a target to reverse the prevalence of obesity (POB) back to 2000 levels by 2020. This paper will outline the application of system dynamics (SD) optimization to simulate the effect of changes in the eating behavior of British children (aged 2 to 15 years) on weight and obesity. This study also will identify how long it will take to achieve the government's target. This paper proposed a simulation model called Intervention Childhood Obesity Dynamics (ICOD) by focusing the interrelations between various strands of knowledge in one complex human weight regulation system. The model offers distinct insights into the dynamics by capturing the complex interdependencies from the causal loop and feedback structure, with the intention to better understand how eating behaviors influence children's weight, body mass index (BMI), and POB measurement. This study proposed a set of equations that are revised from the original (baseline) equations. The new functions are constructed using a RAMP function of linear decrement in portion size and number of meal variables from 2013 until 2020 in order to achieve the 2020 desired target. Findings from the optimization analysis revealed that the 2020 target won't be achieved until 2026 at the earliest, six years late. Thus, the model suggested that a longer period may be needed to significantly reduce obesity in this population.
  12. Mohd Sharif SN, Hashim N, Md Isa I, Abu Bakar S, Idris Saidin M, Syahrizal Ahmad M, et al.
    J Nanosci Nanotechnol, 2021 12 01;21(12):5867-5880.
    PMID: 34229781 DOI: 10.1166/jnn.2021.19499
    The usefulness of carboxymethyl cellulose (CMC) as a matrix material in enhancing the controlled release formulations of bispyribac (BP) herbicide from the interlayer gallery of zinc hydroxide nitratesodium dodecylsulphate-bispyribac (ZHN-SDS-BP) nanocomposite was investigated. The CMC coated nanocomposite, ZHN-SDS-BP-CMC was characterised using several instruments for the determination of its physicochemical properties. The release rates of the BP were measured using a UV spectrophotometer, and the aqueous solutions containing PO3-₄ , SO2-₄ and Cl- were selected as release media in the release studies so as to mimic the real conditions of environmental soil. Significant release time delays, triggered by the gelation forming ability and hygroscopic nature of CMC, were observed in all release media, and the release processes were found to behave in a concentration-dependent manner in all release media. Fitting the release data into several kinetic models demonstrated that release in aqueous solutions of Na₃PO₄ and Na₂SO₄ was governed by pseudo second order processes, whereas the release in an aqueous NaCl solution was governed by the parabolic diffusion kinetic model. The potential of CMC in prolonging the release of BP from ZHN-SDS-BP-CMC can potentially help in reducing the pollution resulting from the overuse of pesticides.
  13. Ardyani T, Mohamed A, Abu Bakar S, Sagisaka M, Umetsu Y, Hafiz Mamat M, et al.
    Carbohydr Polym, 2020 Jan 15;228:115376.
    PMID: 31635739 DOI: 10.1016/j.carbpol.2019.115376
    The effect of incorporating common dodecyl anionic and cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), dodecylethyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS) in nanocomposites of reduced graphene oxide and nanocellulose are described. The stabilization and electrical properties of the nanocomoposites of reduced graphene oxide (RGO) and nanofibrillated kenaf cellulose (NFC) were characterized using four-point probe electrical conductivity measurements. Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to investigate dispersion morphology and the quality of RGO inside the NFC matrices. Small-angle neutron scattering (SANS) was used to study the aggregation behavior of the aqueous surfactant systems and RGO dispersions. The cationic surfactant DTAB proved to be the best choice for stabilization of RGO in NFC, giving enhanced electrical conductivity five orders of magnitude higher than the neat NFC. The results highlight the effects of hydrophilic surfactant moieties on the structure, stability and properties of RGO/NFC composites.
  14. Jamaluddin NA, Mohamed A, Abu Bakar S, Ardyani T, Sagisaka M, Suhara S, et al.
    Phys Chem Chem Phys, 2020 Jun 14;22(22):12732-12744.
    PMID: 32462145 DOI: 10.1039/d0cp01243b
    The generation of surfactant-assisted exfoliated graphene oxide (sEGO) by electrochemical exfoliation is influenced by the presence of surfactants, and in particular the hydrophobic tail molecular-architecture. Increasing surfactant chain branching may improve the affinity for the graphite surfaces to provide enhanced intersheet separation and stabilisation of exfoliated sheets. The resulting sEGO composites can be readily used to remove of a model pollutant, the dye, methylene blue (MB), from aqueous solutions by providing abundant sites for dye adsorption. This article explores relationships between surfactant structure and the performance of sEGO for MB adsorption. Double-branched and highly branched triple-chain graphene-compatible surfactants were successfully synthesised and characterised by 1H NMR spectroscopy. These surfactants were used to produce sEGO via electrochemical exfoliation of graphite, and the sEGOs generated were further utilised in batch adsorption studies of MB from aqueous solutions. The properties of these synthesised surfactants were compared with those of a common single-chain standard surfactant, sodium dodecyl-sulfate (SDS). The structural morphology of sEGO was assessed using Raman spectroscopy and field emission scanning electron microscopy (FESEM). To reveal the links between the hydrophobic chain structure and the sEGO adsorption capacity, UV-visible spectroscopy, zeta potential, and air-water (a/w) surface tension measurements were conducted. The aggregation behaviour of the surfactants was studied using small-angle neutron scattering (SANS). The highly branched triple-chain surfactant sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) displayed enhanced exfoliating efficiency compared to those of the single-and double-chain surfactants, leading to ∼83% MB removal. The findings suggest that highly branched triple-chain surfactants are able to offer more adsorption sites, by expanding the sEGO interlayer gap for MB adsorption, compared to standard single-chain surfactants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links