Lactate measurement is vital in clinical diagnostics especially among trauma and sepsis patients. In recent years, it has been shown that saliva samples are an excellent applicable alternative for non-invasive measurement of lactate. In this study, we describe a method for the determination of lactate concentration in saliva samples by using a simple and low-cost cotton fabric-based electrochemical device (FED). The device was fabricated using template method for patterning the electrodes and wax-patterning technique for creating the sample placement/reaction zone. Lactate oxidase (LOx) enzyme was immobilised at the reaction zone using a simple entrapment method. The LOx enzymatic reaction product, hydrogen peroxide (H2O2) was measured using chronoamperometric measurements at the optimal detection potential (-0.2 V vs. Ag/AgCl), in which the device exhibited a linear working range between 0.1 to 5 mM, sensitivity (slope) of 0.3169 μA mM(-1) and detection limit of 0.3 mM. The low detection limit and wide linear range were suitable to measure salivary lactate (SL) concentration, thus saliva samples obtained under fasting conditions and after meals were evaluated using the FED. The measured SL varied among subjects and increased after meals randomly. The proposed device provides a suitable analytical alternative for rapid and non-invasive determination of lactate in saliva samples. The device can also be adapted to a variety of other assays that requires simplicity, low-cost, portability and flexibility.
Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers.