Displaying all 4 publications

Abstract:
Sort:
  1. Soo JAL, Makhtar MMZ, Shoparwe NF, Otitoju TA, Mohamad M, Tan LS, et al.
    Membranes (Basel), 2021 Aug 31;11(9).
    PMID: 34564493 DOI: 10.3390/membranes11090676
    Textile industry effluent contains a high amount of toxic colorants. These dyes are carcinogenic and threats to the environment and living beings. In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) was used as the based polymer for PIMs with bis-(2-ethylhexyl) phosphate (B2EHP) and dioctyl phthalate (DOP) as the carrier and plasticizer. The fabricated PIMs were employed to extract the cation dye (Malachite Green; MG) from the feeding phase. PIMs were also characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), contact angle, water uptake, Fourier-transform infrared spectroscopy (FTIR) and ions exchange capacity. The performance of the PIMs was investigated under various conditions such as percentage of carrier and initial dye concentration. With permeability and flux values of 0.1188 cm/min and 1.1913 mg cm/min, PIM produced with 18% w/w PVDF-co-HFP, 21% w/w B2EHP, 1% w/w DOP and 40% w/w THF and was able to achieve more than 97% of MG extraction. The experimental data were then fitted with a pseudo-second-order (PSO) model, and the calculated R2 value was ~0.99. This shows that the data has a good fit with the PSO model. PIM is a potential alternative technology in textile industry effluent treatment; however, the right formulation is crucial for developing a highly efficient membrane.
  2. Shoparwe NF, Kee LC, Otitoju TA, Shukor H, Zainuddin N, Makhtar MMZ
    Membranes (Basel), 2021 Sep 21;11(9).
    PMID: 34564538 DOI: 10.3390/membranes11090721
    In the present work, a highly efficient mixed matrix membrane (MMM) for humic acid (HA) removal was developed. Multiwalled carbon nanotubes (MWCNTs) were functionalized in the presence of 3-methacryloxypropyl trimethoxysilane using the co-condensation method and were subsequently loaded with TiO2 (prepared via the sol-gel route). The as-prepared material was then incorporated into a PES polymer solution to prepare a fMWCNT-TiO2/PES hybrid membrane via non-solvent induced phase inversion. The microstructure of the membrane was characterized using Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, water contact angle, thickness, porosity, and pore size. The fMWCNT-TiO2/PES hybrid membrane was tested for the removal of HA and antifouling performance. The results show that the surface hydrophilicity of the membranes was greatly improved upon the addition of the fMWCNT-TiO2 particles. The results show that 92% of HA was effectively removed after 1 h of filtration. In comparison with pristine membrane, the incorporation of fMWCNT-TiO2 nanoparticles led to enhanced pure water flux (99.05 L/m2 h), permeate flux (62.01 L/m2 h), higher HA rejection (92%), and antifouling improvement (RFR: 37.40%, FRR: 86.02%). Thus, the fMWCNT-TiO2/PES hybrid membrane is considered to be a great potential membrane for the improvement of ultrafiltration membranes.
  3. Gunny AAN, Leem SJ, Makhtar MMZ, Zainuddin N, Mohd Roslim MH, Raja Hashim RH, et al.
    Polymers (Basel), 2023 Jun 18;15(12).
    PMID: 37376369 DOI: 10.3390/polym15122722
    Mango has a high global demand. Fruit fungal disease causes post-harvest mango and fruit losses. Conventional chemical fungicides and plastic prevent fungal diseases but they are hazardous to humans and the environment. Direct application of essential oil for post-harvest fruit control is not a cost-effective approach. The current work offers an eco-friendly alternative to controlling the post-harvest disease of fruit using a film amalgamated with oil derived from Melaleuca alternifolia. Further, this research also aimed to assess the mechanical, antioxidant, and antifungal properties of the film infused with essential oil. ASTM D882 was performed to determine the tensile strength of the film. The antioxidant reaction of the film was assessed using the DPPH assay. In vitro and in vivo tests were used to evaluate the inhibitory development of the film against pathogenic fungi, by comparing the film with different levels of essential oil together with the treatment of the control and chemical fungicide. Disk diffusion was used to evaluate mycelial growth inhibition, where the film incorporated with 1.2 wt% essential oil yielded the best results. For in vivo testing of wounded mango, the disease incidence was successfully reduced. For in vivo testing of unwounded mango to which the film incorporated with essential oil was applied, although some quality parameters such as the color index were not significantly affected, weight loss was reduced, soluble solid content was increased, and firmness was increased, compared to the control. Thus, the film incorporated with essential oil (EO) from M. alternifolia can be an environmentally friendly alternative to the conventional approach and the direct application of essential oil to control post-harvest disease in mango.
  4. Sreedharan DK, Alias H, Makhtar MMZ, Shun TJ, Mokhtar AMA, Shukor H, et al.
    Open Life Sci, 2024;19(1):20220809.
    PMID: 38283116 DOI: 10.1515/biol-2022-0809
    Bacteriocins produced by Bacillus subtilis have gained recognition for their safe use in humans. In this study, we aimed to assess the inhibitory activity of an antimicrobial peptide synthesized by the wild-type strain of B. subtilis against the notorious pathogen Pseudomonas aeruginosa. Our investigation employed the broth microdilution method to evaluate the inhibitory potential of this peptide. Among the four different pathogen strains tested, P. aeruginosa exhibited the highest susceptibility, with an inhibition rate of 29.62%. In parallel, we explored the cultivation conditions of B. subtilis, recognizing the potential of this versatile bacterium for applications beyond antimicrobial production. The highest inhibitory activity was achieved at pH 8, with an inhibition rate of 20.18%, indicating the potential for optimizing pH conditions for enhanced antimicrobial peptide production. For the kinetics of peptide production, the study explored different incubation periods and agitation levels. Remarkably, the highest activity of B. subtilis was observed at 24 h of incubation, with an inhibition rate of 44.93%. Finally, the study focused on the isolation of the antimicrobial peptide from the cell-free supernatant of B. subtilis using ammonium sulfate precipitation at various concentrations. The highest recorded activity was an impressive 89.72% achieved at an 80% concentration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links