Displaying all 3 publications

Abstract:
Sort:
  1. Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM
    PMID: 33504317 DOI: 10.2174/1871524921666210127110028
    BACKGROUND: Cannabis and its extracts are now being explored due to their huge health benefits. Although, the effect they elicit, whether on humans or rodents, may vary based on the age of the animal/subject and or the time in which the extract is administered. However, several debates exist concerning the various medical applications of these compounds. Nonetheless, their applicability as therapeutics should not be clouded based on their perceived negative biological actions.

    METHODS: Articles from reliable databases such as Science Direct, PubMed, Google Scholar, Scopus, and Ovid were searched. Specific search methods were employed using multiple keywords: ''Medicinal Cannabis; endocannabinoid system; cannabinoids receptors; cannabinoids and cognition; brain disorders; neurodegenerative diseases''. For the inclusion/exclusion criteria, only relevant articles related to medicinal Cannabis and its various compounds were considered.

    RESULTS: The current review highlights the role, effects, and involvement of Cannabis, cannabinoids, and endocannabinoids in preventing selected neurodegenerative diseases and possible amelioration of cognitive impairments. Furthermore, it also focuses on Cannabis utilization in many disease conditions such as Alzheimer's and Parkinson's disease among others.

    CONCLUSION: In conclusion, the usage of Cannabis should be further explored as accumulating evidence suggests that it could be effective and somewhat safe, especially when adhered to the recommended dosage. Furthermore, in-depth studies should be conducted in order to unravel the specific mechanism underpinning the involvement of cannabinoids at the cellular level and their therapeutic applications.

  2. Mahdi O, Chiroma SM, Hidayat Baharuldin MT, Mohd Nor NH, Mat Taib CN, Jagadeesan S, et al.
    Biomedicines, 2021 Sep 19;9(9).
    PMID: 34572456 DOI: 10.3390/biomedicines9091270
    Neurotransmission and cognitive dysfunctions have been linked to old age disorders including Alzheimer's disease (AD). Aluminium is a known neurotoxic metal, whereas d-galactose (d-gal) has been established as a senescence agent. WIN55,212-2 (WIN), is a potent cannabinoid agonist which partially restores neurogenesis in aged rats. The current study aimed to explore the therapeutic potentials of WIN on Aluminium chloride (AlCl3) and d-gal-induced rat models with cognitive dysfunction. Healthy male albino Wistar rats weighing between 200-250 g were injected with d-gal 60 mg/kg intra peritoneally (i.p), while AlCl3 (200 mg/kg) was orally administered once daily for 10 consecutive weeks. Subsequently, from weeks 8-11 rats were co-administered with WIN (0.5, 1 and 2 mg/kg/day) and donepezil 1 mg/kg. The cognitive functions of the rats were assessed with a Morris water maze (MWM). Furthermore, oxidative stress biomarkers; malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and neurogenesis markers: Nestin and glial fibrillary acidic protein (GFAP) were also evaluated, as well as the histology of the hippocampus. The results revealed that rats exposed to AlCl3 and d-gal alone showed cognitive impairments and marked neuronal loss (p < 0.05) in their hippocampal conus ammonis 1 (CA1). Additionally, a significant decrease in the expressions of GFAP and Nestin was also observed, including increased levels of MDA and decreased levels of SOD and GSH. However, administration of WIN irrespective of the doses given reversed the cognitive impairments and the associated biochemical derangements. As there were increases in the levels SOD, GSH, Nestin and GFAP (p < 0.05), while a significant decrease in the levels of MDA was observed, besides attenuation of the aberrant cytoarchitecture of the rat's hippocampi. The biochemical profiles of the WIN-treated rats were normal. Thus, these findings offer possible scientific evidence of WIN being an effective candidate in the treatment of AD-related cognitive deficits.
  3. Chiroma SM, Baharuldin MTH, Mat Taib CN, Amom Z, Jagadeesan S, Ilham Adenan M, et al.
    Int J Mol Sci, 2019 Apr 16;20(8).
    PMID: 31014012 DOI: 10.3390/ijms20081871
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder more prevalent among the elderly population. AD is characterised clinically by a progressive decline in cognitive functions and pathologically by the presence of neurofibrillary tangles (NFTs), deposition of beta-amyloid (Aβ) plaque and synaptic dysfunction in the brain. Centella asiatica (CA) is a valuable herb being used widely in African, Ayurvedic, and Chinese traditional medicine to reverse cognitive impairment and to enhance cognitive functions. This study aimed to evaluate the effectiveness of CA in preventing d-galactose/aluminium chloride (d-gal/AlCl3) induced AD-like pathologies and the underlying mechanisms of action were further investigated for the first time. Results showed that co-administration of CA to d-gal/AlCl3 induced AD-like rat models significantly increased the levels of protein phosphatase 2 (PP2A) and decreased the levels of glycogen synthase kinase-3 beta (GSK-3β). It was further observed that, CA increased the expression of mRNA of Bcl-2, while there was minimal effect on the expression of caspase 3 mRNA. The results also showed that, CA prevented morphological aberrations in the connus ammonis 3 (CA 3) sub-region of the rat's hippocampus. The results clearly demonstrated for the first time that CA could alleviate d-gal/AlCl3 induced AD-like pathologies in rats via inhibition of hyperphosphorylated tau (P-tau) bio-synthetic proteins, anti-apoptosis and maintenance of cytoarchitecture.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links