Displaying all 5 publications

Abstract:
Sort:
  1. Oladosu Y, Rafii MY, Abdullah N, Magaji U, Hussin G, Ramli A, et al.
    Biomed Res Int, 2016;2016:7985167.
    PMID: 27429981 DOI: 10.1155/2016/7985167
    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.
  2. Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, et al.
    Mol Biol Rep, 2019 Feb;46(1):1519-1532.
    PMID: 30628024 DOI: 10.1007/s11033-019-04584-2
    Breeding for disease resistant varieties remains very effective and economical in controlling the bacterial leaf blight (BLB) of rice. Breeders have played a major role in developing resistant rice varieties against the BLB infection which has been adjudged to be a major disease causing significant yield reduction in rice. It would be difficult to select rice crops with multiple genes of resistance using the conventional approach alone. This is due to masking effect of genes including epistasis. In addition, conventional breeding takes a lot of time before a gene of interest can be introgressed. Linkage drag is also a major challenge in conventional approach. Molecular breeding involving markers has facilitated the characterization and introgression of BLB disease resistance genes. Biotechnology has brought another innovation in form of genetic engineering (transgenesis) of rice. Although, molecular breeding cannot be taken as a substitute for conventional breeding, molecular approach for combating BLB disease in rice is worthwhile given the demand for increased production of rice in a fast growing population of our society. This present article highlights the recent progress from conventional to molecular approach in breeding for BLB disease resistant rice varieties.
  3. Oladosu Y, Rafii MY, Magaji U, Abdullah N, Miah G, Chukwu SC, et al.
    Biomed Res Int, 2018;2018:8936767.
    PMID: 30105259 DOI: 10.1155/2018/8936767
    The associations among yield-related traits and the pattern of influence on rice grain yield were investigated. This evaluation is important to determine the direct and indirect effects of various traits on yield to determine selection criteria for higher grain yield. Fifteen rice genotypes were evaluated under tropical condition at five locations in two planting seasons. The experiment was laid out in a randomized complete block design with three replications across the locations. Data were collected on vegetative and yield components traits. The pooled data based on the analysis of variance revealed that there were significant differences (p < 0.001) among the fifteen genotypes for all the characters studied except for panicle length and 100-grain weight. Highly significant and positive correlations at phenotypic level were observed in grain weight per hill (0.796), filled grains per panicle (0.702), panicles per hill (0.632), and tillers per hill (0.712) with yield per hectare, while moderate positive correlations were observed in flag leaf length to width ratio (0.348), days to flowering (0.412), and days to maturity (0.544). By contrast, unfilled grains per panicle (-0.225) and plant height (-0.342) had a negative significant association with yield per hectare. Filled grains per panicle (0.491) exhibited the maximum positive direct effect on yield followed by grain weight per hill (0.449), while unfilled grain per panicle (-0.144) had a negative direct effect. The maximum indirect effect on yield per hectare was recorded by the tillers per hill through the panicles per hill. Therefore, tillers per hill, filled grains per panicle, and grain weight per hill could be used as selection criteria for improving grain yield in rice.
  4. Kamarudin ZS, Yusop MR, Ismail MR, Tengku Muda Mohamed M, Harun AR, Yusuff O, et al.
    Int J Genomics, 2019;2019:8406036.
    PMID: 32083115 DOI: 10.1155/2019/8406036
    Late embryogenesis abundant (LEA) proteins are primarily found in plants stem, roots, and other organs and play significant roles in tolerance to several abiotic stresses. Plants synthesize a discrete set of LEA proteins in response to drought stress. In this study, the expression patterns of LEA genes were investigated in two advanced mutant rice genotypes subjected to the drought stress condition and different physiological traits including photosynthetic rate, leaf chlorophyll content, and photosystem II (PSII) photochemical efficiency (Fv/Fm) which were analyzed to confirm their drought tolerance. Five LEA genes (OsLEA1, OsLEA2, OsLEA3, OsLEA4, and OsLEA5) were used in the evaluation of rice genotypes and were significantly upregulated by more than 4-fold for MR219-4 and MR219-9. The upregulated genes by these two varieties showed high similarity with the drought-tolerant check variety, Aeron1. This indicates that these advanced mutant genotypes have better tolerance to drought stress. The changes in the expression level of LEA genes among the selected rice genotypes under drought stress were further confirmed. Hence, LEA genes could be served as a potential tool for drought tolerance determination in rice. MR219-4 and MR219-9 were found to be promising in breeding for drought tolerance as they offer better physiological adaptation to drought stress.
  5. Oladosu Y, Rafii MY, Samuel C, Fatai A, Magaji U, Kareem I, et al.
    Int J Mol Sci, 2019 Jul 18;20(14).
    PMID: 31323764 DOI: 10.3390/ijms20143519
    Drought is the leading threat to agricultural food production, especially in the cultivation of rice, a semi-aquatic plant. Drought tolerance is a complex quantitative trait with a complicated phenotype that affects different developmental stages in plants. The level of susceptibility or tolerance of rice to several drought conditions is coordinated by the action of different drought-responsive genes in relation with other stress components which stimulate signal transduction pathways. Interdisciplinary researchers have broken the complex mechanism of plant tolerance using various methods such as genetic engineering or marker-assisted selection to develop a new cultivar with improved drought resistance. The main objectives of this review were to highlight the current method of developing a durable drought-resistant rice variety through conventional breeding and the use of biotechnological tools and to comprehensively review the available information on drought-resistant genes, QTL analysis, gene transformation and marker-assisted selection. The response, indicators, causes, and adaptation processes to the drought stress were discussed in the review. Overall, this review provides a systemic glimpse of breeding methods from conventional to the latest innovation in molecular development of drought-tolerant rice variety. This information could serve as guidance for researchers and rice breeders.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links