Flavonoids are known to possess cardioprotective properties. Vascular endothelial function is a surrogate marker for cardiovascular diseases, including hypertension. We have studied the effects of chronic flavonoid treatment on vascular endothelial functions in spontaneously hypertensive rats (SHR). Starting from 6-7 weeks old, SHR were given flavonoids (baicalein, flavone, or quercetin) orally (10 mg/kg, once daily) to the SHRs for 4 weeks. Aortas from all the flavonoid-treated animals showed remarkably higher endothelium-dependent relaxations to acetylcholine, to a similar extent as those pretreated with the angiotensin-converting enzyme inhibitor, captopril. However, in contrast to other experimental groups, flavone pretreatment also enhanced the endothelium-independent relaxations to sodium nitroprusside. In addition, treatment with either flavone or quercetin induced a significant attenuation in systolic blood pressure of the hypertensive animals. The present results suggest that chronic treatment with the flavonoids (baicalein, flavone, and quercetin) preserves vascular endothelial functions in hypertensive animals through several possible actions, including increasing endothelial nitric oxide production and bioavailability and reduction in blood pressure.
Acute exposure to the flavonoid baicalein inhibited endothelium-dependent relaxation in physiological arteries, although the mechanisms are not fully understood. We investigated the effect of baicalein on vascular tone in Wistar-Kyoto (WKY) rat isolated aortic rings in the presence and absence of oxidative stress to further determine the underlying mechanisms. Exposure to baicalein (10 microM) completely abolished endothelium-dependent relaxation induced by acetylcholine and attenuated significantly the endothelium-independent relaxation induced by sodium nitroprusside. Baicalein, similar to Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microM), potentiated significantly the contractile response of aortic rings to alpha1-adrenoceptor agonist phenylephrine. In the presence of L-NAME the baicalein effect on phenylphrine contraction or acetylcholine relaxation was unaltered, suggesting that these effects of baicalein are (like L-NAME effect) endothelial nitric oxide synthase (eNOS)/endothelium-derived nitric oxide-dependent. Inhibition of cyclooxygenase activity with indomethacin (10 microM) or scavenging of superoxide anions with superoxide dismutase (150 units/ml), but not scavenging of hydrogen peroxide with catalase (800 units/ml), enhanced significantly by an essentially similar extent the relaxation to acetylcholine in baicalein-pretreated aortic rings. Relaxant effect to acetylcholine was significantly attenuated in control aortic rings, but was completely abolished in baicalein-pretreated aortic rings in the presence of reduced form of beta-nicotinamide adenine di-nucleotide (beta-NADH, 300 microM). Baicalein blocked beta-NADH (300 microM)-induced transient contractions, suggesting that baicalein may have inhibited activity of NADH/NADPH-oxidase. Baicalein did not alter the failure of acetylcholine to induce relaxation in the presence of pyrogallol (300 microM). In summary, acute exposure to baicalein impairs eNOS/endothelium-derived nitric oxide-mediated vascular tone in rat aortas through the inhibition of endothelium-derived nitric oxide bioavailability coupled to reduced bioactivity of endothelium-derived nitric oxide and to cyclooxygenase-mediated release of superoxide anions.
The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress.
Boldine, a major aporphine alkaloid found in Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of endothelial dysfunction in hypertension. In the present study, we investigated the effects of boldine on endothelial dysfunction in hypertension using spontaneously hypertensive rats (SHR), the most studied animal model of hypertension. SHR and their age-matched normotensive Wistar-Kyoto (WKY) rats were treated with boldine (20 mg/kg per day) or its vehicle, which served as control, for seven days. Control SHR displayed higher systolic blood pressure (SBP), reduced endothelium-dependent aortic relaxation to acetylcholine (ACh), marginally attenuated endothelium-independent aortic relaxation to sodium nitroprusside (SNP), increased aortic superoxide and peroxynitrite production, and enhanced p47(phox) protein expression as compared with control WKY rats. Boldine treatment significantly lowered SBP in SHR but not in WKY. Boldine treatment enhanced the maximal relaxation to ACh in SHR, but had no effect in WKY, whereas the sensitivity to ACh was increased in both SHR and WKY aortas. Boldine treatment enhanced sensitivity, but was without effect on maximal aortic relaxation responses, to SNP in both WKY and SHR aortas. In addition, boldine treatment lowered aortic superoxide and peroxynitrite production and downregulated p47(phox) protein expression in SHR aortas, but had no effect in the WKY control. These results show that boldine treatment exerts endothelial protective effects in hypertension, achieved, at least in part, through the inhibition of NADPH-mediated superoxide production.