Displaying all 5 publications

Abstract:
Sort:
  1. Premarathne JMKJK, Anuar AS, Thung TY, Satharasinghe DA, Jambari NN, Abdul-Mutalib NA, et al.
    Front Microbiol, 2017;8:2254.
    PMID: 29255448 DOI: 10.3389/fmicb.2017.02254
    Campylobacter is a major foodborne pathogen frequently associated with human bacterial gastroenteritis in the world. This study was conducted to determine the prevalence and antibiotic resistance of Campylobacter spp. in the beef food system in Malaysia. A total of 340 samples consisting of cattle feces (n = 100), beef (n = 120) from wet markets and beef (n = 120) from hypermarkets were analyzed for Campylobacter spp. The overall prevalence of Campylobacter was 17.4%, consisting of 33% in cattle fecal samples, 14.2% in raw beef from wet market and 7.5% in raw beef from the hypermarket. The multiplex-polymerase chain reaction (PCR) identified 55% of the strains as C. jejuni, 26% as C. coli, and 19% as other Campylobacter spp. A high percentage of Campylobacter spp. were resistant to tetracycline (76.9%) and ampicillin (69.2%), whilst low resistance was exhibited to chloramphenicol (7.6%). The MAR Index of Campylobacter isolates from this study ranged from 0.09 to 0.73. The present study indicates the potential public health risk associated with the beef food system, hence stringent surveillance, regulatory measures, and appropriate interventions are required to minimize Campylobacter contamination and prudent antibiotic usage that can ensure consumer safety.
  2. Tan CW, Malcolm TTH, Kuan CH, Thung TY, Chang WS, Loo YY, et al.
    Front Microbiol, 2017;8:1087.
    PMID: 28659901 DOI: 10.3389/fmicb.2017.01087
    Numerous prevalence studies and outbreaks of Vibrio parahaemolyticus infection have been extensively reported in shellfish and crustaceans. Information on the quantitative detection of V. parahaemolyticus in finfish species is limited. In this study, short mackerels (Rastrelliger brachysoma) obtained from different retail marketplaces were monitored with the presence of total and pathogenic strains of V. parahaemolyticus. Out of 130 short mackerel samples, 116 (89.2%) were detected with the presence of total V. parahaemolyticus and microbial loads of total V. parahaemolyticus ranging from <3 to >10(5) MPN/g. Prevalence of total V. parahaemolyticus was found highest in wet markets (95.2%) followed by minimarkets (89.1%) and hypermarkets (83.3%). Pathogenic V. parahaemolyticus strains (tdh+ and/or trh+) were detected in 16.2% (21 of 130) of short mackerel samples. The density of tdh+ V. parahaemolyticus strains were examined ranging from 3.6 to >10(5) MPN/g and microbial loads of V. parahaemolyticus strains positive for both tdh and trh were found ranging from 300 to 740 MPN/g. On the other hand, antibiotic susceptibility profiles of V. parahaemolyticus strains isolated from short mackerels were determined through disc diffusion method in this study. Assessment of antimicrobial susceptibility profile of V. parahaemolyticus revealed majority of the isolates were highly susceptible to ampicillin sulbactam, meropenem, ceftazidime, and imipenem, but resistant to penicillin G and ampicillin. Two isolates (2.99%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.41 which shown resistance to 7 antibiotics. Results of the present study demonstrated that the occurrence of pathogenic V. parahaemolyticus strains in short mackerels and multidrug resistance of V. parahaemolyticus isolates could be a potential public health concerns to the consumer. Furthermore, prevalence data attained from the current study can be further used to develop a microbial risk assessment model to estimate health risks associated with the consumption of short mackerels contaminated with pathogenic V. parahaemolyticus.
  3. Kuan CH, Rukayadi Y, Ahmad SH, Wan Mohamed Radzi CWJ, Thung TY, Premarathne JMKJK, et al.
    Front Microbiol, 2017;8:1433.
    PMID: 28824567 DOI: 10.3389/fmicb.2017.01433
    Given the remarkable increase of public interest in organic food products, it is indeed critical to evaluate the microbiological risk associated with consumption of fresh organic produce. Organic farming practices including the use of animal manures may increase the risk of microbiological contamination as manure can act as a vehicle for transmission of foodborne pathogens. This study aimed to determine and compare the microbiological status between organic and conventional fresh produce at the retail level in Malaysia. A total of 152 organic and conventional vegetables were purchased at retail markets in Malaysia. Samples were analyzed for mesophilic aerobic bacteria, yeasts and molds, and total coliforms using conventional microbiological methods. Combination methods of most probable number-multiplex polymerase chain reaction (MPN-mPCR) were used to detect and quantify foodborne pathogens, including Escherichia coli O157:H7, Shiga toxin-producing E. coli (STEC), Listeria monocytogenes, Salmonella Typhimurium, and Salmonella Enteritidis. Results indicated that most types of organic and conventional vegetables possessed similar microbial count (P > 0.05) of mesophilic aerobic bacteria, yeasts and molds, and total coliforms. E. coli O157:H7 and S. Typhimurium were not detected in any sample analyzed in this study. Among the 152 samples tested, only the conventional lettuce and organic carrot were tested positive for STEC and S. Enteritidis, respectively. L. monocytogenes were more frequently detected in both organic (9.1%) and conventional vegetables (2.7%) as compared to E. coli O157:H7, S. Typhimurium, and S. Enteritidis. Overall, no trend was shown that either organically or conventionally grown vegetables have posed greater microbiological risks. These findings indicated that one particular type of farming practices would not affect the microbiological profiles of fresh produce. Therefore, regardless of farming methods, all vegetables should be subjected to appropriate post-harvest handling practices from farm to fork to ensure the quality and safety of the fresh produce.
  4. Kumari V B C, Huligere S, M K J, Goh KW, Desai SM, H L K, et al.
    Int J Microbiol, 2024;2024:2148676.
    PMID: 38962395 DOI: 10.1155/2024/2148676
    Boza, a cereal-based beverage popular in southeast Europe, is fortified with probiotics and is believed to positively impact the composition of the gut microflora. This investigation focused on fermented cereal-based beverage boza to identify strains of probiotic Lactobacillus spp. capable of inhibiting carbohydrate-hydrolysing enzymes α-glucosidase (AG) and α-amylase (AA). The isolated bacterial strains underwent a comprehensive assessment, including biochemical, molecular, and probiotic trait analyses such as tolerance survivability, adhesion, safety, and health-promoting attributes. We evaluated the inhibitory potential of the supernatant, cell lysate, and intact cells of Lactobacillus spp. Molecular analysis has revealed that isolates RAMULAB30 and RAMULAB29 exhibit a significant genetic similarity (>97%) to Lacticaseibacillus paracasei and Limosilactobacillus fermentum, respectively. These findings are documented in the NCBI database. They exhibited significant resistance to gastrointestinal and intestinal fluids, also indicating their potential for adhesion. Additionally, the isolates showed a significant antibacterial activity, particularly against Micrococcus luteus. They showed resistance to vancomycin and methicillin antibiotics but were more susceptible to streptomycin and ampicillin. Furthermore, the strains demonstrated antioxidant properties. To ensure their safety, a haemolytic assay was conducted despite their general recognition as safe (GRAS) status. The study primarily aimed to evaluate the inhibitory effects of the extract on enzymes AG and AA. Bacterial isolates demonstrated a significant inhibitory activity against both enzyme AG (32%-67% inhibition) and enzyme AA (18%-46% inhibition) in different forms, including supernatant (CS), lysed extract (CE), and intact cell (IC). These findings underscore the potential of bacterial isolates to inhibit the enzyme activity effectively. Furthermore, the L. fermentum RAMULAB29 and L. paracasei RAMULAB30 strains exhibit remarkable antidiabetic potential. Food products incorporating these strains have promising prospects as nutraceuticals, providing improved health benefits.
  5. Huligere SS, Kumari V B C, Patil SM, M K J, Wong LS, Kijsomporn J, et al.
    Food Sci Nutr, 2024 Nov;12(11):9682-9701.
    PMID: 39620004 DOI: 10.1002/fsn3.4444
    Sauerkraut-derived lactic acid bacterial (LAB) strains have gained attention due to their potential health benefits. This study focuses on evaluating seven Sauerkraut-derived RAMULAB strains isolated from sauerkraut, aiming to identify promising candidates for modulating α-glucosidase (AG) and α-amylase (AM) enzymatic functions. RAMULAB strains with remarkable probiotic potential can contribute to the digestive health and manage conditions like diabetes. Identifying robust candidates from sauerkraut, a fermented food, holds promise for natural and cost-effective probiotic sources. The RAMULAB strains underwent extensive characterization, including identification through 16S ribosomal RNA (rRNA) sequencing. Their tolerance to harsh conditions, adherence properties, antimicrobial activity, antioxidant potential, and inhibition of AG and AM were assessed. In silico analyses explored their molecular interactions, particularly with hydroxycitric acid, a potential antidiabetic compound. Among the RAMULAB strains, RAMULAB48 emerged as a standout candidate. It displayed exceptional resilience to acidic bile (≥97%), and simulated gastrointestinal conditions (≥95%), highlighting its suitability for probiotic applications. RAMULAB48 exhibited robust adherence properties, including cell-surface hydrophobicity (80%), autoaggregation (42%), coaggregation with pathogens (≥33%), and adhesion to epithelial cells. Additionally, all seven isolates demonstrated gamma-hemolysis and resistance to antibiotics (Kanamycin, Methicillin, and Vancomycin), while displaying strong antibacterial properties against foodborne pathogens. These RAMULAB strains also exhibited varying degrees of antioxidant activity, with RAMULAB48 displaying the highest potential (≥41%). In terms of antidiabetic activity, cell-free supernatant (CS) obtained from RAMULAB48 expressed the highest inhibition levels, notably inhibiting yeast AG by an impressive 59.55% and AM being by a remarkable 67.42%. RAMULAB48 produced organic acids, including hydroxycitric acid (28.024 mg/mL), which showed promising antidiabetic properties through in silico analyses, indicating favorable interactions with the target enzymes. This study identifies Lacticaseibacillus paracasei RAMULAB48, a Sauerkraut-derived RAMULAB strain, as a promising probiotic candidate with exceptional tolerance, adherence properties, antimicrobial activity, antioxidant potential, and antidiabetic effects. The presence of hydroxycitric acid further underscores its potential in managing diabetes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links