Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ(-/-) and nNOSμ(+/+) mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor N(G)-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ(-/-) and nNOSμ(+/+) mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (~4%) were detected in muscles from nNOSμ(-/-) mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.
Sarcopenia and frailty are highly prevalent conditions in older hospitalized patients, which are associated with a myriad of adverse clinical outcomes. This paper, prepared by a multidisciplinary expert working group from the Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR), provides an up-to-date overview of current evidence and recommendations based on a narrative review of the literature for the screening, diagnosis, and management of sarcopenia and frailty in older patients within the hospital setting. It also includes suggestions on potential pathways to implement change to encourage widespread adoption of these evidence-informed recommendations within hospital settings. The expert working group concluded there was insufficient evidence to support any specific screening tool for sarcopenia and recommends an assessment of probable sarcopenia/sarcopenia using established criteria for all older (≥65 years) hospitalized patients or in younger patients with conditions (e.g., comorbidities) that may increase their risk of sarcopenia. Diagnosis of probable sarcopenia should be based on an assessment of low muscle strength (grip strength or five times sit-to-stand) with sarcopenia diagnosis including low muscle mass quantified from dual energy X-ray absorptiometry, bioelectrical impedance analysis or in the absence of diagnostic devices, calf circumference as a proxy measure. Severe sarcopenia is represented by the addition of impaired physical performance (slow gait speed). All patients with probable sarcopenia or sarcopenia should be investigated for causes (e.g., chronic/acute disease or malnutrition), and treated accordingly. For frailty, it is recommended that all hospitalized patients aged 70 years and older be screened using a validated tool [Clinical Frailty Scale (CFS), Hospital Frailty Risk Score, the FRAIL scale or the Frailty Index]. Patients screened as positive for frailty should undergo further clinical assessment using the Frailty Phenotype, Frailty Index or information collected from a Comprehensive Geriatric Assessment (CGA). All patients identified as frail should receive follow up by a health practitioner(s) for an individualized care plan. To treat older hospitalized patients with probable sarcopenia, sarcopenia, or frailty, it is recommended that a structured and supervised multi-component exercise program incorporating elements of resistance (muscle strengthening), challenging balance, and functional mobility training be prescribed as early as possible combined with nutritional support to optimize energy and protein intake and correct any deficiencies. There is insufficient evidence to recommend pharmacological agents for the treatment of sarcopenia or frailty. Finally, to facilitate integration of these recommendations into hospital settings organization-wide approaches are needed, with the Spread and Sustain framework recommended to facilitate organizational culture change, with the help of 'champions' to drive these changes. A multidisciplinary team approach incorporating awareness and education initiatives for healthcare professionals is recommended to ensure that screening, diagnosis and management approaches for sarcopenia and frailty are embedded and sustained within hospital settings. Finally, patients and caregivers' education should be integrated into the care pathway to facilitate adherence to prescribed management approaches for sarcopenia and frailty.