DESIGN: A cross-sectional design study.
METHODS: A convenience sampling method was used to enrol participants of childbearing age who visited two tertiary hospitals in Hang zhou, a city in eastern China, from June 2021 to March 2022. We conducted a face-to-face questionnaire survey with 520 participants and calculated the prevalence of intention-related factors. Multivariate logistic regression was used to analyse the independent influencing factors of fertility intention.
RESULTS: In total, 105 (20.2%) participants had the intention to have a third child. The results showed that 'employment status', 'age', 'reasons for wanting a third child', the considered 'biggest barrier to having a third child', 'views on the three-child policy', 'desired free services', 'supporting work policies' and 'assistance policies' were significant independent influencing factors of intention to have a third child (p-value
PATIENTS AND METHODS: Patients ≥18 years old with histologically/cytologically confirmed stage IIIB/IV EGFR mutation-positive NSCLC and Eastern Cooperative Oncology Group performance status 0-2 were randomized 1:1 to receive erlotinib (oral; 150 mg once daily until progression/unacceptable toxicity) or GP [G 1250 mg/m(2) i.v. days 1 and 8 (3-weekly cycle); P 75 mg/m(2) i.v. day 1, (3-weekly cycle) for up to four cycles]. Primary end point: investigator-assessed progression-free survival (PFS). Other end points include objective response rate (ORR), overall survival (OS), and safety.
RESULTS: A total of 217 patients were randomized: 110 to erlotinib and 107 to GP. Investigator-assessed median PFS was 11.0 months versus 5.5 months, erlotinib versus GP, respectively [hazard ratio (HR), 0.34, 95% confidence interval (CI) 0.22-0.51; log-rank P < 0.0001]. Independent Review Committee-assessed median PFS was consistent (HR, 0.42). Median OS was 26.3 versus 25.5 months, erlotinib versus GP, respectively (HR, 0.91, 95% CI 0.63-1.31; log-rank P = .607). ORR was 62.7% for erlotinib and 33.6% for GP. Treatment-related serious adverse events (AEs) occurred in 2.7% versus 10.6% of erlotinib and GP patients, respectively. The most common grade ≥3 AEs were rash (6.4%) with erlotinib, and neutropenia (25.0%), leukopenia (14.4%), and anemia (12.5%) with GP.
CONCLUSION: These analyses demonstrate that first-line erlotinib provides a statistically significant improvement in PFS versus GP in Asian patients with EGFR mutation-positive NSCLC (NCT01342965).
MATERIALS AND METHODS: Two EGFR mutation tests, a tissue-based assay (cobas® v1) and a tissue- and blood-based assay (cobas® v2) were used to analyze matched biopsy and blood samples (897 paired samples) from three Asian studies of first-line erlotinib with similar intent-to-treat populations. ENSURE was a phase III comparison of erlotinib and gemcitabine/platinum, FASTACT-2 was a phase III study of gemcitabine/platinum plus erlotinib or placebo, and ASPIRATION was a single-arm phase II study of erlotinib. Agreement statistics were evaluated, based on sensitivity and specificity between the two assays in subgroups of patients with increasing tumor burden.
RESULTS: Patients with discordant EGFR (tissue+/plasma-) mutation status achieved longer progression-free and overall survival than those with concordant (tissue+/plasma+) mutation status. Tumor burden was significantly greater in patients with concordant versus discordant mutations. Pooled analyses of data from the three studies showed a sensitivity of 72.1% (95% confidence interval [CI] 67.8-76.1) and a specificity of 97.9% (95% CI 96.0-99.0) for blood-based testing; sensitivity was greatest in patients with larger baseline tumors.
CONCLUSIONS: Blood-based EGFR mutation testing demonstrated high specificity and good sensitivity, and offers a convenient and easily accessible diagnostic method to complement tissue-based tests. Patients with a discordant mutation status in plasma and tissue, had improved survival outcomes compared with those with a concordant mutation status, which may be due to their lower tumor burden. These data help to inform the clinical utility of this blood-based assay for the detection of EGFR mutations.
METHODS: In this open-label phase III study (PROFILE 1029), patients were randomized 1:1 to receive orally administered crizotinib 250 mg twice daily continuously (3-week cycles) or intravenously administered chemotherapy (pemetrexed 500 mg/m2, plus cisplatin 75 mg/m2, or carboplatin [at a dose to produce area under the concentration-time curve of 5-6 mg·min/mL]) every 3 weeks for a maximum of six cycles. PFS confirmed by independent radiology review was the primary end point.
RESULTS: Crizotinib significantly prolonged PFS (hazard ratio, 0.402; 95% confidence interval [CI]: 0.286-0.565; p < 0.001). The median PFS was 11.1 months with crizotinib and 6.8 months with chemotherapy. The objective response rate was 87.5% (95% CI: 79.6-93.2%) with crizotinib versus 45.6% (95% CI: 35.8-55.7%) with chemotherapy (p < 0.001). The most common adverse events were increased transaminase levels, diarrhea, and vision disorders with crizotinib and leukopenia, neutropenia, and anemia with chemotherapy. Significantly greater improvements from baseline in patient-reported outcomes were seen in crizotinib-treated versus chemotherapy-treated patients.
CONCLUSIONS: First-line crizotinib significantly improved PFS, objective response rate, and patient-reported outcomes compared with standard platinum-based chemotherapy in East Asian patients with ALK-positive advanced NSCLC, which is similar to the results from PROFILE 1014. The safety profiles of crizotinib and chemotherapy were consistent with those previously published.
PATIENTS AND METHODS: Adults with advanced/metastatic EGFR-mutant NSCLC, acquired resistance to first-/second-generation EGFR inhibitors, and MET gene copy number (GCN) ≥5, MET:CEP7 ≥2, or MET IHC 2+/3+ were randomized to tepotinib 500 mg (450 mg active moiety) plus gefitinib 250 mg once daily, or chemotherapy. Primary endpoint was investigator-assessed progression-free survival (PFS). MET-amplified subgroup analysis was preplanned.
RESULTS: Overall (N = 55), median PFS was 4.9 months versus 4.4 months [stratified HR, 0.67; 90% CI, 0.35-1.28] with tepotinib plus gefitinib versus chemotherapy. In 19 patients with MET amplification (median age 60.4 years; 68.4% never-smokers; median GCN 8.8; median MET/CEP7 2.8; 89.5% with MET IHC 3+), tepotinib plus gefitinib improved PFS (HR, 0.13; 90% CI, 0.04-0.43) and overall survival (OS; HR, 0.10; 90% CI, 0.02-0.36) versus chemotherapy. Objective response rate was 66.7% with tepotinib plus gefitinib versus 42.9% with chemotherapy; median duration of response was 19.9 months versus 2.8 months. Median duration of tepotinib plus gefitinib was 11.3 months (range, 1.1-56.5), with treatment >1 year in six (50.0%) and >4 years in three patients (25.0%). Seven patients (58.3%) had treatment-related grade ≥3 adverse events with tepotinib plus gefitinib and five (71.4%) had chemotherapy.
CONCLUSIONS: Final analysis of INSIGHT suggests improved PFS and OS with tepotinib plus gefitinib versus chemotherapy in a subgroup of patients with MET-amplified EGFR-mutant NSCLC, after progression on EGFR inhibitors.
PATIENTS AND METHODS: Patients were 18 years and older with no previous systemic anticancer therapy. Neurologically stable patients with CNS metastases were allowed. Patients were randomly assigned 1:1 to lazertinib 240 mg once daily orally or gefitinib 250 mg once daily orally, stratified by mutation status and race. The primary end point was investigator-assessed progression-free survival (PFS) by RECIST v1.1.
RESULTS: Overall, 393 patients received double-blind study treatment across 96 sites in 13 countries. Median PFS was significantly longer with lazertinib than with gefitinib (20.6 v 9.7 months; hazard ratio [HR], 0.45; 95% CI, 0.34 to 0.58; P < .001). The PFS benefit of lazertinib over gefitinib was consistent across all predefined subgroups. The objective response rate was 76% in both groups (odds ratio, 0.99; 95% CI, 0.62 to 1.59). Median duration of response was 19.4 months (95% CI, 16.6 to 24.9) with lazertinib versus 8.3 months (95% CI, 6.9 to 10.9) with gefitinib. Overall survival data were immature at the interim analysis (29% maturity). The 18-month survival rate was 80% with lazertinib and 72% with gefitinib (HR, 0.74; 95% CI, 0.51 to 1.08; P = .116). Observed safety of both treatments was consistent with their previously reported safety profiles.
CONCLUSION: Lazertinib demonstrated significant efficacy improvement compared with gefitinib in the first-line treatment of EGFR-mutated advanced NSCLC, with a manageable safety profile.
METHODS: In this single-arm, open-label, phase 3 trial, we recruited patients from 38 sites across China, Thailand, Vietnam, Singapore, and Malaysia, who were chronically infected with HCV genotypes 1-6, and were HCV treatment-naive or treatment-experienced, either without cirrhosis or with compensated cirrhosis. Patients self-administered a combined sofosbuvir (400 mg) and velpatasvir (100 mg) tablet once daily for 12 weeks. The primary efficacy endpoint was sustained virological response, defined as HCV RNA less than 15 IU/mL at 12 weeks after completion of treatment (SVR12), assessed in all patients who received at least one dose of study drug. The primary safety endpoint was the proportion of adverse events leading to premature discontinuation of study drug. This trial is registered with ClinicalTrials.gov, number NCT02671500, and is completed.
FINDINGS: Between April 14, 2016, and June 30, 2017, 375 patients were enrolled in the study, of whom 374 completed the full treatment course and one discontinued treatment. Overall, 362 (97% [95% CI 94-98]) of 375 patients achieved SVR12. Among 42 patients with HCV genotype 3b, all of whom had baseline resistance-associated substitutions in NS5A, 25 (89% [95% CI 72-98]) of 28 patients without cirrhosis and seven (50% [23-77]) of 14 patients with cirrhosis achieved SVR12. The most common adverse events were upper respiratory tract infection (36 [10%] patients) and headache (18 [5%] patients). There were no discontinuations due to adverse events. Serious adverse events were reported in three (1%) patients, none of which was judged to be related to sofosbuvir-velpatasvir treatment.
INTERPRETATION: Consistent with data from other phase 3 studies, single-tablet sofosbuvir-velpatasvir for 12 weeks is an efficacious and safe treatment for Asian patients with chronic HCV infection, but might have lower efficacy in those infected with HCV genotype 3b and with cirrhosis.
FUNDING: Gilead Sciences.
PATIENTS AND METHODS: This analysis included patients with treatment-naive, EGFR-mutant advanced NSCLC randomized to amivantamab-lazertinib (n = 429) or osimertinib (n = 429) in MARIPOSA. Pathogenic alterations were identified by next-generation sequencing (NGS) of baseline blood ctDNA with Guardant360 CDx. Ex19del and L858R ctDNA in blood was analyzed at baseline and cycle 3 day 1 (C3D1) with Biodesix droplet digital polymerase chain reaction (ddPCR).
RESULTS: Baseline ctDNA for NGS of pathogenic alterations was available for 636 patients (amivantamab-lazertinib, n = 320; osimertinib, n = 316). Amivantamab-lazertinib improved median PFS (mPFS) versus osimertinib for patients with TP53 co-mutations {18.2 versus 12.9 months; HR 0.65 [95% confidence interval (CI) 0.48-0.87]; P = 0.003} and for patients with wild-type TP53 [22.1 versus 19.9 months; HR 0.75 (95% CI 0.52-1.07)]. In patients with EGFR-mutant, ddPCR-detectable baseline ctDNA, amivantamab-lazertinib significantly prolonged mPFS versus osimertinib [20.3 versus 14.8 months; HR 0.68 (95% CI 0.53-0.86); P = 0.002]. Amivantamab-lazertinib significantly improved mPFS versus osimertinib in patients without ctDNA clearance at C3D1 [16.5 versus 9.1 months; HR 0.49 (95% CI 0.27-0.87); P = 0.015] and with clearance [24.0 versus 16.5 months; HR 0.64 (95% CI 0.48-0.87); P = 0.004]. Amivantamab-lazertinib significantly prolonged mPFS versus osimertinib among randomized patients with [18.2 versus 11.0 months; HR 0.58 (95% CI 0.37-0.91); P = 0.017] and without baseline liver metastases [24.0 versus 18.3 months; HR 0.74 (95% CI 0.60-0.91); P = 0.004].
CONCLUSIONS: Amivantamab-lazertinib effectively overcomes the effect of high-risk features and represents a promising new standard of care for patients with EGFR-mutant advanced NSCLC.