Displaying all 2 publications

Abstract:
Sort:
  1. Lokman IM, Rashid U, Zainal Z, Yunus R, Taufiq-Yap YH
    J Oleo Sci, 2014;63(9):849-55.
    PMID: 25099911
    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.
  2. Azfar AK, Kasim MF, Lokman IM, Rafaie HA, Mastuli MS
    R Soc Open Sci, 2020 Feb;7(2):191590.
    PMID: 32257324 DOI: 10.1098/rsos.191590
    Ag and Ni/ZnO photocatalyst nanostructures were successfully synthesized by a sol-gel method. In this work, the photocatalyst sample was systematically studied based on several factors affecting the performance of photocatalyst, which are size, morphology, band gap, textural properties and the number of active sites presence on the surface of the nanocatalyst. X-ray diffraction revealed that Ag/ZnO nanomaterials experienced multiple phases, meanwhile for Ni/ZnO the phase of nanomaterials were pure and single phase for stoichiometry less than 5%. Field emission scanning electron microscope (FESEM) showed almost all of the synthesized nanomaterials possessed a mixture of nanorods and spherical-like shape morphology. The Ag/ZnO showed high photocatalytic activity, producing at least 14th trials of nanocatalyst reusability on degradation of methyl orange under UV irradiation. Interestingly, this phenomenon was not observed in larger surface area of Ni/ZnO nanomaterials which supposedly favour photocatalytic activity, but instead producing poor photocatalytic performance. The main reasons were studied and exposed by temperature-programmed desorption of carbon dioxide (TPD-CO2) which showed that incorporation of Ag into ZnO lattice has enhanced the number of active sites on the surface of the nanocatalyst. Whereas incorporation of Ni in ZnO has lowered the number of active sites with respect to undoped ZnO. Active sites measurement is effective and significant, providing opportunities in developing an intensive study as an additional factor.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links