Displaying all 2 publications

Abstract:
Sort:
  1. Wong JW, Yang X, Zhao Q, Xue Y, Lok TJ, Wang L, et al.
    ACS Macro Lett, 2023 Apr 13.
    PMID: 37052196 DOI: 10.1021/acsmacrolett.3c00017
    Shape-memory polymers (SMPs) have demonstrated potential for use in automotive, biomedical, and aerospace industries. However, ensuring the sustainability of these materials remains a challenge. Herein, a sustainable approach to synthesize a semicrystalline polymer using biomass-derivable precursors via catalyst-free polyesterification is presented. The synthesized biodegradable polymer, poly(1,8-octanediol-co-1,12-dodecanedioate-co-citrate) (PODDC), exhibits excellent shape-memory properties, as evidenced by good shape fixity and shape recovery ratios of 98%, along with a large reversible actuation strain of 28%. Without the use of a catalyst, the mild polymerization enables the reconfiguration of the partially cured two-dimensional (2D) film to a three-dimensional (3D) geometric form in the middle process. This study appears to be a step forward in developing sustainable SMPs and a simple way for constructing a 3D structure of a permanent shape.
  2. Chen X, Wong JW, Low JT, Lok TJ, Xue Y, Zeng Z, et al.
    ACS Macro Lett, 2024 Aug 20;13(8):1037-1042.
    PMID: 39078044 DOI: 10.1021/acsmacrolett.4c00266
    Catalyst-free, volatile organic solvent (VOC)-free synthesis of biobased cross-linked polymers is an important sustainable feature in polyesterification. To date, these polyesters have been extensively studied for their fundamental sustainability across various uses. The ultimate potential sustainability for these materials, however, is constrained to static structural parts due to their intractable rigid three-dimensional (3D) network. Here, we reveal intrinsic dynamic exchangeable bonds within this type of cross-linked semicrystalline network, poly(1,8-octanediol-co-1,12-docanedioate-co-citrate) (PODDC), enabling permanent shape reconfigurability. Annealing at slightly above melting-transition temperature (Tm) allows for shape reconfigurability up to nine times, comparable in performance to the existing bond-exchange systems. No reagents are involved from synthesis to shape reconfiguration, suggesting an exciting feature exhibited by this sustainable cross-linked material without the need for further chemical modification. We further extend this benefit of reconfigurability to enable flexible shape design in a smart shape-memory polymer (SMP), showing it as one of its potential applications. After its applications, it can undergo hydrolytic degradation. We envision that such multifaceted sustainability for the material will attract interest in environmentally friendly applications such as fabricating external part of soft robots and shape-morphing devices with reduced environmental impact.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links