JAK-STAT signaling cascade has emerged as an ideal target for the treatment of myeloproliferative diseases, autoimmune diseases, and neurological disorders. Ruxolitinib (Rux), is an orally bioavailable, potent and selective Janus-associated kinase (JAK) inhibitor, proven to be effective to target activated JAK-STAT pathway in the diseases previously described. Unfortunately, limited studies have investigated the potential cytotoxic profile of Rux on other cell populations within the heterogenous CNS microenvironment. Two stem and progenitor cell populations, namely the oligodendrocyte precursor cells (OPCs) and neural stem/progenitor cells (NSPCs), are important for long-term maintenance and post-injury recovery response of the CNS. In light of the limited evidence, this study sought to investigate further the effect of Rux on proliferating and differentiating OPCs and NSPCs populations. In the present study, cultured rat OPCs and NSPCs were treated with various concentrations of Rux, ranging from 2 μM to 20 μM. The effect of Rux on proliferating OPCs (PDGF-R-α+) and proliferating NSPCs (nestin+) was assessed via a 3-day Rux treatment, whereas its effect on differentiating OPCs (MBP+/PDGF-R-α+) and differentiating NSPCs (neurofilament+) was assessed after a 7-day treatment. Cytotoxicity of Rux was also assessed on OPC populations by examining its influence on cell death and DNA synthesis via YO-PRO-1/PI dual-staining and BrdU assay, respectively. The results suggest that Rux at a dosage above 10 μM reduces the number proliferating OPCs, likely via the induction of apoptosis. On the other hand, Rux treatment from 2.5 μM to 20 μM significantly reduces the number of differentiating OPCs by inducing necrosis. Meanwhile, Rux treatment has no observable untoward impact on NSPC cultures within the dosage range tested. Taken together, OPCs appears to be more vulnerable to the dosage effect of Rux, whereas NSPCs are not significantly impacted by Rux, suggesting a differential mechanism of actions of Rux on the cell types.
Biomaterials provide novel platforms to deliver stem cell and growth factor therapies for central nervous system (CNS) repair. The majority of these approaches have focused on the promotion of neural progenitor cells and neurogenesis. However, it is now increasingly recognized that glial responses are critical for recovery in the entire neurovascular unit. In this study, we investigated the cellular effects of epidermal growth factor (EGF) containing hydrogels on primary astrocyte cultures. Both EGF alone and EGF-hydrogel equally promoted astrocyte proliferation, but EGF-hydrogels further enhanced astrocyte activation, as evidenced by a significantly elevated Glial fibrillary acidic protein (GFAP) gene expression. Thereafter, conditioned media from astrocytes activated by EGF-hydrogel protected neurons against injury and promoted synaptic plasticity after oxygen-glucose deprivation. Taken together, these findings suggest that EGF-hydrogels can shift astrocytes into neuro-supportive phenotypes. Consistent with this idea, quantitative-polymerase chain reaction (qPCR) demonstrated that EGF-hydrogels shifted astrocytes in part by downregulating potentially negative A1-like genes (Fbln5 and Rt1-S3) and upregulating potentially beneficial A2-like genes (Clcf1, Tgm1, and Ptgs2). Further studies are warranted to explore the idea of using biomaterials to modify astrocyte behavior and thus indirectly augment neuroprotection and neuroplasticity in the context of stem cell and growth factor therapies for the CNS. Stem Cells Translational Medicine 2019;8:1242&1248.