Displaying all 4 publications

Abstract:
Sort:
  1. AlAama J, Smith TD, Lo A, Howard H, Kline AA, Lange M, et al.
    Hum Mutat, 2011 May;32(5):501-6.
    PMID: 21305654 DOI: 10.1002/humu.21463
    Genetic diseases are a pressing global health problem that requires comprehensive access to basic clinical and genetic data to counter. The creation of regional and international databases that can be easily accessed by clinicians and diagnostic labs will greatly improve our ability to accurately diagnose and treat patients with genetic disorders. The Human Variome Project is currently working in conjunction with human genetics societies to achieve this by establishing systems to collect every mutation reported by a diagnostic laboratory, clinic, or research laboratory in a country and store these within a national repository, or HVP Country Node. Nodes have already been initiated in Australia, Belgium, China, Egypt, Malaysia, and Kuwait. Each is examining how to systematically collect and share genetic, clinical, and biochemical information in a country-specific manner that is sensitive to local ethical and cultural issues. This article gathers cases of genetic data collection within countries and takes recommendations from the global community to develop a procedure for countries wishing to establish their own collection system as part of the Human Variome Project. We hope this may lead to standard practices to facilitate global collection of data and allow efficient use in clinical practice, research and therapy.
  2. Maaroufi A, Vince A, Himatt SM, Mohamed R, Fung J, Opare-Sem O, et al.
    J Viral Hepat, 2017 10;24 Suppl 2:8-24.
    PMID: 29105285 DOI: 10.1111/jvh.12762
    Due to the introduction of newer, more efficacious treatment options, there is a pressing need for policy makers and public health officials to develop or adapt national hepatitis C virus (HCV) control strategies to the changing epidemiological landscape. To do so, detailed, country-specific data are needed to characterize the burden of chronic HCV infection. In this study of 17 countries, a literature review of published and unpublished data on HCV prevalence, viraemia, genotype, age and gender distribution, liver transplants and diagnosis and treatment rates was conducted, and inputs were validated by expert consensus in each country. Viraemic prevalence in this study ranged from 0.2% in Hong Kong to 2.4% in Taiwan, while the largest viraemic populations were in Nigeria (2 597 000 cases) and Taiwan (569 000 cases). Diagnosis, treatment and liver transplant rates varied widely across the countries included in this analysis, as did the availability of reliable data. Addressing data gaps will be critical for the development of future strategies to manage and minimize the disease burden of hepatitis C.
  3. Chan HLY, Chen CJ, Omede O, Al Qamish J, Al Naamani K, Bane A, et al.
    J Viral Hepat, 2017 10;24 Suppl 2:25-43.
    PMID: 29105283 DOI: 10.1111/jvh.12760
    Factors influencing the morbidity and mortality associated with viremic hepatitis C virus (HCV) infection change over time and place, making it difficult to compare reported estimates. Models were developed for 17 countries (Bahrain, Bulgaria, Cameroon, Colombia, Croatia, Dominican Republic, Ethiopia, Ghana, Hong Kong, Jordan, Kazakhstan, Malaysia, Morocco, Nigeria, Qatar and Taiwan) to quantify and characterize the viremic population as well as forecast the changes in the infected population and the corresponding disease burden from 2015 to 2030. Model inputs were agreed upon through expert consensus, and a standardized methodology was followed to allow for comparison across countries. The viremic prevalence is expected to remain constant or decline in all but four countries (Ethiopia, Ghana, Jordan and Oman); however, HCV-related morbidity and mortality will increase in all countries except Qatar and Taiwan. In Qatar, the high-treatment rate will contribute to a reduction in total cases and HCV-related morbidity by 2030. In the remaining countries, however, the current treatment paradigm will be insufficient to achieve large reductions in HCV-related morbidity and mortality.
  4. Chen DS, Hamoudi W, Mustapha B, Layden J, Nersesov A, Reic T, et al.
    J Viral Hepat, 2017 10;24 Suppl 2:44-63.
    PMID: 29105286 DOI: 10.1111/jvh.12759
    The hepatitis C virus (HCV) epidemic was forecasted through 2030 for 17 countries in Africa, Asia, Europe, Latin America and the Middle East, and interventions for achieving the Global Health Sector Strategy on viral hepatitis targets-"WHO Targets" (65% reduction in HCV-related deaths, 90% reduction in new infections and 90% of infections diagnosed by 2030) were considered. Scaling up treatment and diagnosis rates over time would be required to achieve these targets in all but one country, even with the introduction of high SVR therapies. The scenarios developed to achieve the WHO Targets in all countries studied assumed the implementation of national policies to prevent new infections and to diagnose current infections through screening.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links