Displaying all 3 publications

Abstract:
Sort:
  1. Lee LK, Lim ZF, Gu H, Chan LL, Litaker RW, Tester PA, et al.
    Sci Rep, 2020 07 09;10(1):11251.
    PMID: 32647125 DOI: 10.1038/s41598-020-68136-6
    Microhabitats influence the distribution and abundance of benthic harmful dinoflagellate (BHAB) species. Currently, much of the information on the relationships between BHABs and microhabitat preferences is based on non-quantitative anecdotal observations, many of which are contradictory. The goal of this study was to better quantify BHAB and microhabitat relationships using a statistically rigorous approach. Between April 2016 to May 2017, a total of 243 artificial substrate samplers were deployed at five locations in the Perhentian Islands, Malaysia while simultaneous photo-quadrat surveys were performed to characterize the benthic substrates present at each sampling site. The screen samplers were retrieved 24 h later and the abundances of five BHAB genera, Gambierdiscus, Ostreopsis, Coolia, Amphidinium, and Prorocentrum were determined. Substrate data were then analyzed using a Bray-Curtis dissimilarity matrix to statistically identify distinct microhabitat types. Although BHABs were associated with a variety of biotic and abiotic substrates, the results of this study demonstrated differing degrees of microhabitat preference. Analysis of the survey results using canonical correspondence analysis explained 70.5% (horizontal first axis) and 21.6% (vertical second axis) of the constrained variation in the distribution of various genera among microhabitat types. Prorocentrum and Coolia appear to have the greatest range being broadly distributed among a wide variety of microhabitats. Amphidinium was always found in low abundances and was widely distributed among microhabitats dominated by hard coral, turf algae, sand and silt, and fleshy algae and reached the highest abundances there. Gambierdiscus and Ostreopsis had more restricted distributions. Gambierdiscus were found preferentially associated with turf algae, hard coral and, to a lesser extent, fleshy macroalgae microhabitats. Ostreopsis, almost always more abundant than Gambierdiscus, preferred the same microhabitats as Gambierdiscus and were found in microbial mats as well. With similar habitat preferences Ostreopsis may serve as an indicator organism for the presence of Gambierdiscus. This study provides insight into how BHAB-specific microhabitat preferences can affect toxicity risks.
  2. Yong HL, Mustapa NI, Lee LK, Lim ZF, Tan TH, Usup G, et al.
    Harmful Algae, 2018 09;78:56-68.
    PMID: 30196925 DOI: 10.1016/j.hal.2018.07.009
    Few studies have investigated the effect of fine-scale habitat differences on the dynamics of benthic harmful dinoflagellate assemblages. To determine how these microhabitat differences affect the distribution and abundance of the major benthic harmful dinoflagellate genera in a tropical coral reef ecosystem, a field study was undertaken between April-September 2015 and January 2016 on the shallow reef flat of the fringing reef of Rawa Island, Terengganu, Malaysia. Sampling of benthic dinoflagellates was carried out using an artificial substrate sampling method (fiberglass screens). Benthic microhabitats surrounding the sampling screens were characterized simultaneously from photographs of a 0.25-m2 quadrat based on categories of bottom substrate types. Five taxonomic groups of benthic dinoflagellates, Ostreopsis, Gambierdiscus, Prorocentrum, Amphidinium, and Coolia were identified, and cells were enumerated using a light microscope. The results showed Gambierdiscus was less abundant than other genera throughout the study period, with maximum abundance of 1.2 × 103 cells 100 cm-2. While most taxa were present on reefs with high coral cover, higher cell abundances were observed in reefs with high turf algal cover and coral rubble, with the exception of Ostreopsis, where the abundance reached a maximum of 3.4 × 104 cells 100 cm-2 in habitats with high coral cover. Microhabitat heterogeneity was identified as a key factor governing the benthic harmful dinoflagellate assemblages and may account for much of the observed variability in dominant taxa. This finding has significant implications for the role of variability in the benthic harmful algal bloom (BHAB) outbreaks and the potential in identifying BHAB-related toxin transfer pathways and the key vectors in the food webs.
  3. Leaw CP, Tan TH, Lim HC, Teng ST, Yong HL, Smith KF, et al.
    Harmful Algae, 2016 05;55:137-149.
    PMID: 28073527 DOI: 10.1016/j.hal.2016.02.010
    In this study, inter- and intraspecific genetic diversity within the marine harmful dinoflagellate genus Coolia Meunier was evaluated using isolates obtained from the tropics to subtropics in both Pacific and Atlantic Ocean basins. The aim was to assess the phylogeographic history of the genus and to clarify the validity of established species including Coolia malayensis. Phylogenetic analysis of the D1-D2 LSU rDNA sequences identified six major lineages (L1-L6) corresponding to the morphospecies Coolia malayensis (L1), C. monotis (L2), C. santacroce (L3), C. palmyrensis (L4), C. tropicalis (L5), and C. canariensis (L6). A median joining network (MJN) of C. malayensis ITS2 rDNA sequences revealed a total of 16 haplotypes; however, no spatial genetic differentiation among populations was observed. These MJN results in conjunction with CBC analysis, rDNA phylogenies and geographical distribution analyses confirm C. malayensis as a distinct species which is globally distributed in the tropical to warm-temperate regions. A molecular clock analysis using ITS2 rDNA revealed the evolutionary history of Coolia dated back to the Mesozoic, and supports the hypothesis that historical vicariant events in the early Cenozoic drove the allopatric differentiation of C. malayensis and C. monotis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links