Few-shot learning aims to train a model with a limited number of base class samples to classify the novel class samples. However, to attain generalization with a limited number of samples is not a trivial task. This paper proposed a novel few-shot learning approach named Self-supervised Contrastive Learning (SCL) that enriched the model representation with multiple self-supervision objectives. Given the base class samples, the model is trained with the base class loss. Subsequently, contrastive-based self-supervision is introduced to minimize the distance between each training sample with their augmented variants to improve the sample discrimination. To recognize the distant sample, rotation-based self-supervision is proposed to enable the model to learn to recognize the rotation degree of the samples for better sample diversity. The multitask environment is introduced where each training sample is assigned with two class labels: base class label and rotation class label. Complex augmentation is put forth to help the model learn a deeper understanding of the object. The image structure of the training samples are augmented independent of the base class information. The proposed SCL is trained to minimize the base class loss, contrastive distance loss, and rotation class loss simultaneously to learn the generic features and improve the novel class performance. With the multiple self-supervision objectives, the proposed SCL outperforms state-of-the-art few-shot approaches on few-shot image classification benchmark datasets.
Recent successes in deep learning have inspired researchers to apply deep neural networks to Acoustic Event Classification (AEC). While deep learning methods can train effective AEC models, they are susceptible to overfitting due to the models' high complexity. In this paper, we introduce EnViTSA, an innovative approach that tackles key challenges in AEC. EnViTSA combines an ensemble of Vision Transformers with SpecAugment, a novel data augmentation technique, to significantly enhance AEC performance. Raw acoustic signals are transformed into Log Mel-spectrograms using Short-Time Fourier Transform, resulting in a fixed-size spectrogram representation. To address data scarcity and overfitting issues, we employ SpecAugment to generate additional training samples through time masking and frequency masking. The core of EnViTSA resides in its ensemble of pre-trained Vision Transformers, harnessing the unique strengths of the Vision Transformer architecture. This ensemble approach not only reduces inductive biases but also effectively mitigates overfitting. In this study, we evaluate the EnViTSA method on three benchmark datasets: ESC-10, ESC-50, and UrbanSound8K. The experimental results underscore the efficacy of our approach, achieving impressive accuracy scores of 93.50%, 85.85%, and 83.20% on ESC-10, ESC-50, and UrbanSound8K, respectively. EnViTSA represents a substantial advancement in AEC, demonstrating the potential of Vision Transformers and SpecAugment in the acoustic domain.
Hand gesture recognition (HGR) is a crucial area of research that enhances communication by overcoming language barriers and facilitating human-computer interaction. Although previous works in HGR have employed deep neural networks, they fail to encode the orientation and position of the hand in the image. To address this issue, this paper proposes HGR-ViT, a Vision Transformer (ViT) model with an attention mechanism for hand gesture recognition. Given a hand gesture image, it is first split into fixed size patches. Positional embedding is added to these embeddings to form learnable vectors that capture the positional information of the hand patches. The resulting sequence of vectors are then served as the input to a standard Transformer encoder to obtain the hand gesture representation. A multilayer perceptron head is added to the output of the encoder to classify the hand gesture to the correct class. The proposed HGR-ViT obtains an accuracy of 99.98%, 99.36% and 99.85% for the American Sign Language (ASL) dataset, ASL with Digits dataset, and National University of Singapore (NUS) hand gesture dataset, respectively.
Autonomous vehicles have become a topic of interest in recent times due to the rapid advancement of automobile and computer vision technology. The ability of autonomous vehicles to drive safely and efficiently relies heavily on their ability to accurately recognize traffic signs. This makes traffic sign recognition a critical component of autonomous driving systems. To address this challenge, researchers have been exploring various approaches to traffic sign recognition, including machine learning and deep learning. Despite these efforts, the variability of traffic signs across different geographical regions, complex background scenes, and changes in illumination still poses significant challenges to the development of reliable traffic sign recognition systems. This paper provides a comprehensive overview of the latest advancements in the field of traffic sign recognition, covering various key areas, including preprocessing techniques, feature extraction methods, classification techniques, datasets, and performance evaluation. The paper also delves into the commonly used traffic sign recognition datasets and their associated challenges. Additionally, this paper sheds light on the limitations and future research prospects of traffic sign recognition.
Sign language recognition presents significant challenges due to the intricate nature of hand gestures and the necessity to capture fine-grained details. In response to these challenges, a novel approach is proposed-Lightweight Attentive VGG16 with Random Forest (LAVRF) model. LAVRF introduces a refined adaptation of the VGG16 model integrated with attention modules, complemented by a Random Forest classifier. By streamlining the VGG16 architecture, the Lightweight Attentive VGG16 effectively manages complexity while incorporating attention mechanisms that dynamically concentrate on pertinent regions within input images, resulting in enhanced representation learning. Leveraging the Random Forest classifier provides notable benefits, including proficient handling of high-dimensional feature representations, reduction of variance and overfitting concerns, and resilience against noisy and incomplete data. Additionally, the model performance is further optimized through hyperparameter optimization, utilizing the Optuna in conjunction with hill climbing, which efficiently explores the hyperparameter space to discover optimal configurations. The proposed LAVRF model demonstrates outstanding accuracy on three datasets, achieving remarkable results of 99.98%, 99.90%, and 100% on the American Sign Language, American Sign Language with Digits, and NUS Hand Posture datasets, respectively.