Displaying all 8 publications

Abstract:
Sort:
  1. Lim HT, Kok BH, Leow CY, Leow CH
    Fish Shellfish Immunol, 2023 Sep;140:108986.
    PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986
    Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
  2. Boo YL, Lim HT, Chin PW, Lim SY, Hoo FK
    Parasitol Int, 2016 Feb;65(1):55-57.
    PMID: 26454133 DOI: 10.1016/j.parint.2015.10.003
    Plasmodium knowlesi, a zoonotic malaria, is now considered the fifth species of Plasmodium causing malaria in humans. With its 24-hour erythrocytic stage of development, it has raised concern regarding its high potential in replicating and leading to severe illness. Spleen is an important site for removal of parasitized red blood cells and generating immunity. We reported a case of knowlesi malaria in a non-immune, splenectomized patient. We observed the delay in parasite clearance, high parasitic counts, and severe illness at presentation. A thorough search through literature revealed several case reports on falciparum and vivax malaria in splenectomized patients. However, literature available for knowlesi malaria in splenectomized patient is limited. Further studies need to be carried out to clarify the role of spleen in host defense against human malaria especially P. knowlesi.
  3. Lim HT, Kok BH, Lim CP, Abdul Majeed AB, Leow CY, Leow CH
    Biomed Eng Adv, 2022 Dec;4:100054.
    PMID: 36158162 DOI: 10.1016/j.bea.2022.100054
    With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.
  4. Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH
    Virus Res, 2023 Jan 15;324:199018.
    PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018
    The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
  5. Koh HP, Jagan N, George D, Mazlan-Kepli W, Mohamed S, Lim HT, et al.
    J Thromb Thrombolysis, 2021 Oct;52(3):836-847.
    PMID: 33748900 DOI: 10.1007/s11239-021-02426-2
    There is a wide variation on the efficacy of three-factor Prothrombin Complex Concentrate (3F-PCC) in warfarin reversal. We aimed to determine the efficacy and safety of 3F-PCC in warfarin reversal. This multicentre prospective study analysed data from adult patients on warfarin who received 3F-PCC (Prothrombinex-VF®) for anticoagulation reversal between June 2019 to October 2020. Purposive sampling was used in this study. Study endpoints included target INR achievement, adverse drug reactions (ADRs), and in-hospital all-cause mortality. Logistic regression analyses were used to assess independent predictors of study endpoints. One-hundred thirty-seven patients with a median age of 68 (59-76) years were recruited, who were predominantly male (59.9%, n = 82). A total of 102 patients required 3F-PCC for life-threatening (40.9%, n = 56) and clinically significant bleeding (33.6%, n = 46). Initial INRs ranged from 1.55 to undetectable high (> 26). All patients had INR reduction, of which 62% (n = 85) achieved target INR, whereas 12.4% (n = 17) achieved INR below the target range. Median INR was reduced from 4.76 (3.14-8.32) to 1.54 (1.27-1.88) post-3F-PCC (p 
  6. Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, et al.
    Pathog Glob Health, 2023 Mar;117(2):134-151.
    PMID: 35550001 DOI: 10.1080/20477724.2022.2072456
    The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
  7. Lim CP, Leow CH, Lim HT, Kok BH, Chuah C, Oliveira JIN, et al.
    Clin Exp Vaccine Res, 2024 Jul;13(3):202-217.
    PMID: 39144127 DOI: 10.7774/cevr.2024.13.3.202
    Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links