Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Nurul Asma Samsudin, Zulkarnain Zainal, Lim, Hong-Ngee, Yusran Sulaiman, Chang, Sook-Keng
    MyJurnal
    Titania nanotube is gaining tremendous interest for its unique features including high
    surface area, ion-exchange ability, photocatalytic potential and prominent electrical properties. Many
    attempts were made to manipulate the unique properties of titania nanotubes for supercapacitor
    application. In this review a comprehensive list of literatures on fabrication of titania nanotubes via
    anodisation method in fluoride-based electrolytes and its application as supercapacitor are discussed.
    This review shows that the nanotube morphology can be optimized by varying the anodisation
    parameter such as electrolyte concentration, pH, voltage, and bath temperature. The review also
    includes studies on the application of titania nanotubes as supercapacitor on improving the specific
    capacitance value by doping with metal oxides and conducting polymers.
  2. Nima Ghamarian, Azmah Hanim, M.A., Nahavandi, M., Zulkarnain Zainal, Lim, Hong Ngee
    MyJurnal
    In the recent years, electronic packaging provides significant research and development challenges
    across multiple disciplines such as performance, materials, reliability, thermals and interconnections.
    New technologies and techniques frequently adopted can be implemented in soldering alloys of
    semiconductor sectors in terms of optimisation. Wetting contact angle or wettability of solder alloys
    is one of the important factors which has got the attention of scholars. Hence in this study, due to the
    remarkable similarity over classical solder alloys (Pb-Sn), Bi-Ag solder was investigated. Data were
    collected through the effects of aging time variation and different weight percentages of Ag in solder
    alloys. The contact angle of the alloys with Cu plate was measured by optical microscopy. Artificial
    neural networks (ANNs) were applied on the measured datasets to develop a numerical model for further
    simulation. Results of the experiments and simulations showed that the coefficient of determination (R2
    )
    is around 0.97, which signifies that the ANN set up is appropriate for the evaluation.
  3. Ibrahim I, Lim HN, Huang NM
    Mikrochim Acta, 2019 06 14;186(7):452.
    PMID: 31201543 DOI: 10.1007/s00604-019-3547-x
    A multi-functional hybrid of cellulose acetate with cadmium sulfide and Methylene blue (CA/CdS/MB) in a bead composition was synthesized and investigated as a photosensor-adsorbent for the rapid, selective, and sensitive detection, and adsorption of Cu(II) ions. These hybrid CA-modified beads are composed of multiple adsorption active sites and possess a surface area of 58 cm2 g-1. They are an efficient adsorbent with a maximum adsorption capacity of 0.57 mg g-1. Photoelectrochemical (PEC) detection of Cu(II) was accomplished by modifying the beads on a glassy carbon electrode. The beads containing 20 mmol of sulfur displayed the widest linear analytical range (0.1-290 nM) and the lowest detection limit (16.9 nM) for Cu(II) with high selectivity and reliable reproducibility. The successful application of the beads has provided a new insight for the selection of a responsive photoactive material for a PEC assay, as well as an effective adsorbent material for Cu(II) ions. Graphical abstract A multi-functional hybrid of cellulose acetate with cadmium sulfide and Methylene blue (CA/CdS/MB) in a bead composition was synthesized and investigated as a photosensor-adsorbent for the rapid, selective and sensitive detection and adsorption of Cu(II) ions.
  4. Lim SP, Pandikumar A, Lim HN, Ramaraj R, Huang NM
    Sci Rep, 2015;5:11922.
    PMID: 26146362 DOI: 10.1038/srep11922
    A silver nanoparticle-decorated N,S-co-doped TiO2 nanocomposite was successfully prepared and used as an efficient photoanode in high-performance dye-sensitized solar cells (DSSCs) with N719 dye. The DSSCs assembled with the N,S-TiO2@Ag-modified photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 8.22%, which was better than that of a DSSC photoanode composed of unmodified TiO2 (2.57%) under full sunlight illumination (100 mWcm(-2), AM 1.5 G). This enhanced efficiency was mainly attributed to the reduced band gap energy, improved interfacial charge transfer, and retarded charge recombination process. The influence of the Ag content on the overall efficiency was also investigated, and the optimum Ag content with N,S-TiO2 was found to be 20 wt%. Because of the enhanced solar energy conversion efficiency of the N,S-TiO2@Ag nanocomposite, it should be considered as a potential photoanode for high-performance DSSCs.
  5. Arul P, Gowthaman NSK, John SA, Lim HN
    ACS Omega, 2020 Jun 23;5(24):14242-14253.
    PMID: 32596560 DOI: 10.1021/acsomega.9b03829
    Excess levels of nitrite ion in drinking water interact with amine functionalized compounds to form carcinogenic nitrosamines, which cause stomach cancer. Thus, it is indispensable to develop a simple protocol to detect nitrite. In this paper, a Cu-metal-organic framework (Cu-MOF) with graphene oxide (GO) composite was synthesized by ultrasonication followed by solvothermal method and then fabricated on a glassy carbon (GC) electrode for the sensitive and selective determination of nitrite contamination. The SEM image of the synthesized Cu-MOF showed colloidosome-like structure with an average size of 8 μm. Interestingly, the Cu-MOF-GO composite synthesized by ultrasonic irradiation followed by solvothermal process produce controlled size of 3 μm colloidosome-like structure. This was attributed to the formation of an exfoliated sheet-like structure of GO by ultrasonication in addition to the obvious influence of GO providing the oxygen functional groups as a nucleation node for size-controlled growth. On the other hand, the composite prepared without ultrasonication exhibited 6.6 μm size agglomerated colloidosome-like structures, indicating the crucial role of ultrasonication for the formation of size-controlled composites. XPS results confirmed the presence of Cu(II) in the as-synthesized Cu-MOF-GO based on the binding energies at 935.5 eV for Cu 2p3/2 and 955.4 eV for Cu 2p1/2. The electrochemical impedance studies in [Fe(CN)6]3-/4- redox couple at the composite fabricated electrode exhibited more facile electron transfer than that with Cu-MOF and GO modified electrodes, which helped to utilize Cu-MOF-GO for trace level determination of nitrite in environmental effluent samples. The Cu-MOF-GO fabricated electrode offered a superior sensitive platform for nitrite determination than the Cu-MOF and GO modified electrodes demonstrating oxidation at less positive potential with enhanced oxidation current. The present sensor detects nitrite in the concentration range of 1 × 10-8 to 1 × 10-4 M with the lowest limit of detection (LOD) of 1.47 nM (S/N = 3). Finally, the present Cu-MOF-GO electrode was successfully exploited for nitrite ion determination in lake and dye contaminated water samples.
  6. Mukhair HM, Abdullah AH, Zainal Z, Lim HN
    Polymers (Basel), 2021 May 27;13(11).
    PMID: 34071758 DOI: 10.3390/polym13111746
    In the present study, we explored the effectiveness of PES-Ag3PO4/g-C3N4 film photocatalyst in degrading methyl orange dye under visible light irradiation. The PES-Ag3PO4/g-C3N4 film photocatalyst was prepared via a non-solvent-induced phase inversion process and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser scanning microscopy (LSM), X-ray photoelectron spectra (XPS), UV-diffuse reflectance (DRS), and water contact angle. The incorporation of the Ag3PO4/g-C3N4 composite into the PES matrix improved the pristine PES film's hydrophilicity, as evidenced by the reduction of water contact angle from 79.03° to 54.33° for a film containing 15 wt % of Ag3PO4/g-C3N4 composite. The film's photoactivity showed that 13 wt % was the best loading of Ag3PO4/g-C3N4 composite, and the degradation performance was maintained up to three cycles. The •O2- and h+ were the predominant species responsible for the methyl orange degradation.
  7. Omar MN, Salleh AB, Lim HN, Ahmad Tajudin A
    Anal Biochem, 2016 09 15;509:135-141.
    PMID: 27402177 DOI: 10.1016/j.ab.2016.06.030
    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.
  8. Miyazaki T, Akaike J, Kawashita M, Lim HN
    PMID: 30889741 DOI: 10.1016/j.msec.2019.01.091
    Nanocomposites of magnetite (Fe3O4) and reduced graphene oxide (rGO) generate heat under an alternating magnetic field and therefore have potential applications as thermoseeds for cancer hyperthermia treatment. However, the properties of such nanocomposites as biomaterials have not been sufficiently well characterized. In this study, the osteoconductivity of Fe3O4-rGO nanocomposites of various compositions was evaluated in vitro in terms of their apatite-forming ability in simulated body fluid (SBF). Furthermore, the heat generation of the nanocomposites was measured under an alternating magnetic field. The apatite-forming ability in SBF improved as the Fe3O4 content in the nanocomposite was increased. As the Fe3O4 content was increased, the nanocomposite not only rapidly raised the surrounding temperature to approximately 100 °C, but the specific absorption rate also increased. We assumed that the ionic interaction between the Fe3O4 and rGO was enhanced and that Brown relaxation was suppressed as the proportion of rGO in the nanocomposite was increased. Consequently, a high content of Fe3O4 in the nanocomposite was effective for improving both the osteoconductivity and heat generation characteristics for hyperthermia applications.
  9. Sani F, Shafie S, Lim HN, Musa AO
    Materials (Basel), 2018 Jun 14;11(6).
    PMID: 29899206 DOI: 10.3390/ma11061008
    Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.
  10. Sadrolhosseini AR, Habibiasr M, Shafie S, Solaimani H, Lim HN
    Int J Mol Sci, 2019 Dec 06;20(24).
    PMID: 31817593 DOI: 10.3390/ijms20246153
    Platinum nanoparticles were synthesized in graphene oxide aqueous solution using a laser ablation technique to investigate the effect of optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution. The samples were prepared with different ablation times. The platinum nanoparticles that formed a spherical shape on the surface of graphene oxide solution were authenticated using UV-visible spectrum and transmission electron microscopy patterns. The particle size decreased with increasing ablation time, and the concentration and volume fraction of samples were increased. To obtain the optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution, UV-visible spectroscopy, Z-scan, thermal lens and photoacoustic techniques were used. Consequently, the linear and nonlinear refractive indices increased with an increase in the volume fraction of platinum nanoparticles. It was observed from the spatial self-phase modulation patterns that, the optical nonlinear property of the graphene oxide was enhanced in the presence of platinum nanoparticles, and the nonlinearity increased with an increase in the volume fraction of platinum nanoparticles inside the graphene oxide solution. The thermal diffusivity and thermal effusivity of platinum nanoparticles graphene oxide were measured using a thermal lens and photoacoustic methods, respectively. The thermal diffusivity and thermal effusivity of samples were in the range of 0.0341 × 10-5 m2/s to 0.1223 × 10-5 m2/s and 0.163 W s1/2 cm-2 K-1 to 0.3192 W s1/2 cm-2 K-1, respectively. Consequently, the platinum enhanced the optical and thermal properties of graphene oxide.
  11. Zubair NA, Rahman NA, Lim HN, Sulaiman Y
    Nanoscale Res Lett, 2017 Dec;12(1):113.
    PMID: 28209034 DOI: 10.1186/s11671-017-1888-0
    Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.
  12. Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM
    Analyst, 2015 Apr 21;140(8):2540-55.
    PMID: 25738185 DOI: 10.1039/c4an02330g
    Gold nanorods (Au NRs) are elongated nanoparticles with unique optical properties which depend on their shape anisometry. The Au NR-based longitudinal localized surface plasmon resonance (longitudinal LSPR) band is very sensitive to the surrounding local environment and upon the addition of target analytes, the interaction between the analytes and the surface of the Au NRs leads to a change in the longitudinal LSPR band. This makes it possible to devise Au NR probes with application potential to the detection of toxic metal ions with an improved limit of detection, response time, and selectivity for the fabrication of sensing devices. The effective surface modification of Au NRs helps in improving their selectivity and sensitivity toward the detection of toxic metal ions. In this review, we discuss different methods for the preparation of surface modified Au NRs for the detection of toxic metal ions based on the LSPR band of the Au NRs and the types of interactions between the surface of Au NRs and metal ions. We summarize the work that has been done on Au NR-based longitudinal LSPR detection of environmentally toxic metal ions, sensing mechanisms, and the current progress in various modified Au NR-based longitudinal LSPR sensors for toxic metal ions. Finally, we discuss the applications of Au NR-based longitudinal LSPR sensors to real sample analysis and some of the future challenges facing longitudinal LSPR-based sensors for the detection of toxic metal ions toward commercial devices.
  13. Lim SP, Pandikumar A, Lim YS, Huang NM, Lim HN
    Sci Rep, 2014;4:5305.
    PMID: 24930387 DOI: 10.1038/srep05305
    This paper reports a rapid and in-situ electrochemical polymerization method for the fabrication of polypyrrole nanoparticles incorporated reduced graphene oxide (rGO@PPy) nanocomposites on a ITO conducting glass and its application as a counter electrode for platinum-free dye-sensitized solar cell (DSSC). The scanning electron microscopic images show the uniform distribution of PPy nanoparticles with diameter ranges between 20 and 30 nm on the rGO sheets. The electrochemical studies reveal that the rGO@PPy has smaller charge transfer resistance and similar electrocatalytic activity as that of the standard Pt counter electrode for the I₃(-)/I(-) redox reaction. The overall solar to electrical energy conversion efficiency of the DSSC with the rGO@PPy counter electrode is 2.21%, which is merely equal to the efficiency of DSSC with sputtered Pt counter electrode (2.19%). The excellent photovoltaic performance, rapid and simple fabrication method and low-cost of the rGO@PPy can be potentially exploited as a alternative counter electrode to the expensive Pt in DSSCs.
  14. Kamali KZ, Alagarsamy P, Huang NM, Ong BH, Lim HN
    ScientificWorldJournal, 2014;2014:396135.
    PMID: 25136664 DOI: 10.1155/2014/396135
    Hematite (α-Fe2O3) nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallinity. The electrochemical behavior of a GC/α-Fe2O3 electrode was studied using CV and EIS techniques with an electrochemical probe, [Fe(CN)6](3-/4-) redox couple. The electrocatalytic activity was investigated toward DA oxidation in a phosphate buffer solution (pH 6.8) by varying different experimental parameters. The chronoamperometric study showed a linear response in the range of 0-2 μM with LoD of 1.6 μM for DA. Square wave voltammetry showed a linear response in the range of 0-35 μM with LoD of 236 nM for DA.
  15. Ikhsan NI, Rameshkumar P, Pandikumar A, Mehmood Shahid M, Huang NM, Vijay Kumar S, et al.
    Talanta, 2015 Nov 1;144:908-14.
    PMID: 26452907 DOI: 10.1016/j.talanta.2015.07.050
    In this report, silver nanoparticles (Ag NPs) were successfully deposited on graphene oxide (GO) sheets to form GO-Ag nanocomposite using garlic extract and sunlight and the nanocomposite modified glassy carbon (GC) electrode was applied as an electrochemical sensor for the detection of nitrite ions. The formation of GO-Ag nanocomposite was confirmed by using UV-visible absorption spectroscopy, TEM, XRD and FTIR spectroscopy analyses. Further, TEM pictures showed a uniform distribution Ag on GO sheets with an average size of 19 nm. The nanocomposite modified electrode produced synergistic catalytic current in nitrite oxidation with a negative shift in overpotential. The limit of detection (LOD) values were found as 2.1 µM and 37 nM, respectively using linear sweep voltammetry (LSV) and amperometric i-t curve techniques. The proposed sensor was stable, reproducible, sensitive and selective toward the detection nitrite and could be applied for the detection of nitrite in real water sample.
  16. Altarawneh M, Ahmed OH, Al-Harahsheh M, Jiang ZT, Huang NM, Lim HN, et al.
    Chemosphere, 2020 Sep;254:126766.
    PMID: 32957264 DOI: 10.1016/j.chemosphere.2020.126766
    Co-pyrolysis of brominated flame retardants (BFRs) with polymeric materials prevails in scenarios pertinent to thermal recycling of bromine-laden objects; most notably the non-metallic fraction in e-waste. Hydro-dehalogenation of aromatic compounds in a hydrogen-donating medium constitutes a key step in refining pyrolysis oil of BFRs. Chemical reactions underpinning this process are poorly understood. Herein, we utilize accurate density functional theory (DFT) calculations to report thermo-kinetic parameters for the reaction of solid polyethylene, PE, (as a surrogate model for aliphatic polymers) with prime products sourced from thermal decomposition of BFRs, namely, HBr, bromophenols; benzene, and phenyl radical. Facile abstraction of an ethylenic H by Br atoms is expected to contribute to the formation of abundant HBr concentrations in practical systems. Likewise, a relatively low energy barrier for aromatic Br atom abstraction from a 2-bromophenol molecule by an alkyl radical site, concurs with the reported noticeable hydro-debromination capacity of PE. Pathways entailing a PE-induced bromination of a phenoxy radical should be hindered in view of high energy barrier for a Br transfer into the para position of the phenoxy radical. Adsorption of a phenoxy radical onto a Cu(Br) site substituted at the PE chain affords the commonly discussed PBDD/Fs precursor of a surface-bounded bromophenolate adduct. Such scenario arises due to the heterogeneous integration of metals into the bromine-rich carbon matrix in primitive recycling of e-waste and their open burning.
  17. Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN
    Ultrason Sonochem, 2019 Nov;58:104649.
    PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649
    Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
  18. Harun SN, Ahmad H, Lim HN, Chia SL, Gill MR
    Pharmaceutics, 2021 Jan 24;13(2).
    PMID: 33498795 DOI: 10.3390/pharmaceutics13020150
    The ruthenium polypyridyl complex [Ru(dppz)2PIP]2+ (dppz: dipyridophenazine, PIP: (2-(phenyl)-imidazo[4,5-f ][1,10]phenanthroline), or Ru-PIP, is a potential anticancer drug that acts by inhibiting DNA replication. Due to the poor dissolution of Ru-PIP in aqueous media, a drug delivery agent would be a useful approach to overcome its limited bioavailability. Mesoporous silica nanoparticles (MSNs) were synthesized via a co-condensation method by using a phenanthrolinium salt with a 16 carbon length chain (Phen-C16) as the template. Optimization of the synthesis conditions by Box-Behnken design (BBD) generated MSNs with high surface area response at 833.9 m2g-1. Ru-PIP was effectively entrapped in MSNs at 18.84%. Drug release profile analysis showed that Ru-PIP is gradually released, with a cumulative release percentage of approximately 50% at 72 h. The release kinetic profile implied that Ru-PIP was released from MSN by diffusion. The in vitro cytotoxicity of Ru-PIP, both free and MSN-encapsulated, was studied in Hela, A549, and T24 cancer cell lines. While treatment of Ru-PIP alone is moderately cytotoxic, encapsulated Ru-PIP exerted significant cytotoxicity upon all the cell lines, with half maximal inhibitory concentration (IC50) values determined by MTT (([3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide]) assay at 48 h exposure substantially decreasing from >30 µM to <10 µM as a result of MSN encapsulation. The mechanistic potential of cytotoxicity on cell cycle distribution showed an increase in G1/S phase populations in all three cell lines. The findings indicate that MSN is an ideal drug delivery agent, as it is able to sustainably release Ru-PIP by diffusion in a prolonged treatment period.
  19. Rayung M, Aung MM, Su'ait MS, Chuah Abdullah L, Ahmad A, Lim HN
    ACS Omega, 2020 Jun 23;5(24):14267-14274.
    PMID: 32596563 DOI: 10.1021/acsomega.9b04348
    Biobased polymers are useful materials in substituting conventional petroleum-derived polymers because of their good properties, ready availability, and abundance in nature. This study reports a new jatropha oil-based gel polymer electrolyte (GPE) for use in dye-sensitized solar cells (DSSCs). The GPE was prepared by mixing jatropha oil-based polyurethane acrylate (PUA) with different concentrations of lithium iodide (LiI). The GPE was characterized by infrared spectroscopy, thermal analysis, lithium nuclear magnetic resonance analysis, electrochemical analysis, and photocurrent conversion efficiency. The highest room-temperature ionic conductivity of 1.88 × 10-4 S cm-1 was obtained at 20 wt % of LiI salt. Additionally, the temperature-dependent ionic conductivity of the GPE exhibited Arrhenius behavior with an activation energy of 0.42 eV and a pre-exponential factor of 1.56 × 103 S cm-1. The electrochemical stability study showed that the PUA GPE was stable up to 2.35 V. The thermal stability of the gel electrolyte showed an improvement after the addition of the salt, suggesting a strong intermolecular interaction between PUA and Li, which leads to polymer-salt complexation, as proven by Fourier transform infrared spectroscopy analysis. A DSSC has been assembled using the optimum ionic conductivity gel electrolyte which indicated 1.2% efficiency under 1 sun condition. Thus, the jatropha oil-based GPE demonstrated favorable properties that make it a promising alternative to petroleum-derived polymer electrolytes in DSSCs.
  20. Girei SH, Lim HN, Ahmad MZ, Mahdi MA, Md Zain AR, Yaacob MH
    Sensors (Basel), 2020 Aug 21;20(17).
    PMID: 32825539 DOI: 10.3390/s20174713
    The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links