Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Lew LC, Liong MT
    J Appl Microbiol, 2013 May;114(5):1241-53.
    PMID: 23311666 DOI: 10.1111/jam.12137
    Probiotics have been extensively reviewed for decades, emphasizing on improving general gut health. Recently, more studies showed that probiotics may exert other health-promoting effects beyond gut well-being, attributed to the rise of the gut-brain axis correlations. Some of these new benefits include skin health such as improving atopic eczema, atopic dermatitis, healing of burn and scars, skin-rejuvenating properties and improving skin innate immunity. Increasing evidence has also showed that bacterial compounds such as cell wall fragments, their metabolites and dead bacteria can elicit certain immune responses on the skin and improve skin barrier functions. This review aimed to underline the mechanisms or the exact compounds underlying the benefits of bacterial extract on the skin based on evidences from in vivo and in vitro studies. This review could be of help in screening of probiotic strains with potential dermal enhancing properties for topical applications.
  2. Lew LC, Liong MT, Gan CY
    J Appl Microbiol, 2013 Feb;114(2):526-35.
    PMID: 23082775 DOI: 10.1111/jam.12044
    AIMS: The study aimed to optimize the growth and evaluate the production of putative dermal bioactives from Lactobacillus rhamnosus FTDC 8313 using response surface methodology, in the presence of divalent metal ions, namely manganese and magnesium.
    METHODS AND RESULTS: A central composite design matrix (alpha value of ± 1.414) was generated with two independent factors, namely manganese sulphate (MnSO(4) ) and magnesium sulphate (MgSO(4) ). The second-order regression model indicated that the quadratic model was significant (P < 0.01), suggesting that the model accurately represented the data in the experimental region. Three-dimensional response surfaces predicted an optimum point with maximum growth of 10.59 log(10) CFU ml(-1) . The combination that produced the optimum point was 0.80 mg ml(-1) MnSO(4) and 1.09 mg ml(-1) MgSO(4) . A validation experiment was performed, and data obtained showed a deviation of 0.30% from the predicted value, ascertaining the predictions and the reliability of the regression model used. Effects of divalent metal ions on the production of putative dermal bioactives, namely hyaluronic acid, diacetyl, peptidoglycan, lipoteichoic acid and organic acids in the region of optimized growth, were evaluated using 3D response surfaces generated. Evaluation based on the individual and interaction effects showed that both manganese and magnesium played an important role in the production of these putative bioactives.
    CONCLUSIONS: Optimum growth of Lact. rhamnosus FTDC 8313 in reconstituted skimmed milk was achieved at 10.59 log(10) CFU ml(-1) in the presence of MnSO(4) (0.80 mg ml(-1) ) and MgSO(4) (1.09 mg ml(-1) ). Production of putative dermal bioactive and inhibitory compounds including hyaluronic acid, diacetyl, peptidoglycan, lipoteichoic acid and organic acids at the regions of optimized growth showed potential dermal applications.
    SIGNIFICANT AND IMPACT OF THE STUDY: This research can serve as a fundamental study to further evaluate the potential of Lactobacillus strains in non-gut-related roles such as dermal applications.
  3. Choi SB, Lew LC, Hor KC, Liong MT
    Appl Biochem Biotechnol, 2014 May;173(1):129-42.
    PMID: 24648139 DOI: 10.1007/s12010-014-0822-5
    This study aimed at optimizing the production of hyaluronic acid by Lactobacillus acidophilus FTDC 1231 using response surface methodology and evaluating the effects of divalent metal ions along the production pathway using molecular docking. Among different divalent metal ions that were screened, only iron (II) sulphate and copper (II) sulphate significantly (P 
  4. Lew LC, Choi SB, Tan PL, Liong MT
    J Appl Microbiol, 2014 Mar;116(3):644-53.
    PMID: 24267975 DOI: 10.1111/jam.12399
    The study aimed to evaluate the effects of Mn(2+) and Mg(2+) on lactic acid production using response surface methodology and to further study their effects on interactions between the enzymes and substrates along the hexose monophosphate pathway using a molecular modelling approach.
  5. Lew LC, Bhat R, Easa AM, Liong MT
    J Sci Food Agric, 2011 Jun;91(8):1406-15.
    PMID: 21384373 DOI: 10.1002/jsfa.4325
    Probiotics are live micro-organisms that exert beneficial effects on their host. A high survival rate during gastrointestinal transit and storage is often desirable. The main aim of this study was to develop protective carriers for probiotics via the use of enzymatically crosslinked soy protein isolate incorporated with agrowastes such as banana peel, banana pulp, cempedak rind and cocoa rind.
  6. Choi SB, Lew LC, Yeo SK, Nair Parvathy S, Liong MT
    Crit Rev Biotechnol, 2015;35(3):392-401.
    PMID: 24575869 DOI: 10.3109/07388551.2014.889077
    Probiotic microorganisms have been documented over the past two decades to play a role in cholesterol-lowering properties via various clinical trials. Several mechanisms have also been proposed and the ability of these microorganisms to deconjugate bile via production of bile salt hydrolase (BSH) has been widely associated with their cholesterol lowering potentials in prevention of hypercholesterolemia. Deconjugated bile salts are more hydrophobic than their conjugated counterparts, thus are less reabsorbed through the intestines resulting in higher excretion into the feces. Replacement of new bile salts from cholesterol as a precursor subsequently leads to decreased serum cholesterol levels. However, some controversies have risen attributed to the activities of deconjugated bile acids that repress the synthesis of bile acids from cholesterol. Deconjugated bile acids have higher binding affinity towards some orphan nuclear receptors namely the farsenoid X receptor (FXR), leading to a suppressed transcription of the enzyme cholesterol 7-alpha hydroxylase (7AH), which is responsible in bile acid synthesis from cholesterol. This notion was further corroborated by our current docking data, which indicated that deconjugated bile acids have higher propensities to bind with the FXR receptor as compared to conjugated bile acids. Bile acids-activated FXR also induces transcription of the IBABP gene, leading to enhanced recycling of bile acids from the intestine back to the liver, which subsequently reduces the need for new bile formation from cholesterol. Possible detrimental effects due to increased deconjugation of bile salts such as malabsorption of lipids, colon carcinogenesis, gallstones formation and altered gut microbial populations, which contribute to other varying gut diseases, were also included in this review. Our current findings and review substantiate the need to look beyond BSH deconjugation as a single factor/mechanism in strain selection for hypercholesterolemia, and/or as a sole mean to justify a cholesterol-lowering property of probiotic strains.
  7. Yew SE, Lim TJ, Lew LC, Bhat R, Mat-Easa A, Liong MT
    J Food Sci, 2011 Apr;76(3):H108-15.
    PMID: 21535834 DOI: 10.1111/j.1750-3841.2011.02107.x
    Probiotic delivery system was developed via the use of microbial transglutaminase (MTG) cross-linked soy protein isolate (SPI) incorporated with agrowastes such as banana peel (BE), banana pulp (BU), and pomelo rind (PR). Inoculums of Lactobacillus bulgaricus FTDC 1511 were added to the cross-linked protein matrix. The incorporation of agrowastes had significantly (P<0.05) reduced the strength, pH value, and the lightness of the SPI gel carriers, while sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles revealed that the occurring cross-links within the SPI gel carriers were attributed to the addition of MTG. Scanning electron microscope micrographs illustrated that SPI carriers containing agrowastes have exhibited a less-dense protein matrix. All the SPI carriers possessed maximum swelling ratio at 4 to 4.5 within 15 min in simulated gastric fluid (SGF), whereas the maximum swelling ratios of SPI/BE, SPI/BU, and SPI/PR were higher compared to that of control in simulated intestinal fluid (SIF). Additionally, SPI carriers in SGF medium did not show degradation of structure, whereas a major collapse of network was observed in SIF medium, indicating controlled-release in the intestines. The addition of agrowastes into SPI carriers led to a significantly (P<0.0001) lower release of L. bulgaricus FTDC 1511 in SGF medium and a higher release in SIF medium, compared to that of the control. SPI carriers containing agrowastes may be useful transports for living probiotic cells through the stomach prior to delivery in the lower intestines.
  8. Lew LC, Choi SB, Khoo BY, Sreenivasan S, Ong KL, Liong MT
    Korean J Food Sci Anim Resour, 2018 Apr;38(2):350-361.
    PMID: 29805284 DOI: 10.5851/kosfa.2018.38.2.350
    Hypercholesterolemia is one of the primary risk factors for cardiovascular diseases. The use of lactobacilli probiotics to reduce blood cholesterol levels have been extensively reported. However, more information is needed to evaluate the possible mechanisms involved and to identify possible targets for further therapeutic development. In this study, strains of lactobacilli were screened based on the ability to assimilate cholesterol, and prevention of cholesterol accumulation in hepatic (HepG2) and intestinal (HT-29) cells. Cell free supernatant (CFS) from Lactobacillus plantarum DR7 showed a higher ability to assimilate cholesterol, reduction in cholesterol accumulation in both HepG2 and HT-29 cells, accompanied by reduced mRNA expression of HMG-CoA reductase (HMGCR) in HepG2 (p<0.05), compared to other lactobacilli. The reduction of HMGCR expression was also diminished in the presence of an AMPK inhibitor (Compound C), suggesting that L. plantarum DR7 exerted its effect via the AMPK pathway, typically via the phosphorylation of AMPK instead of the AMPK mRNA expression in HepG2 (p<0.05). Altogether, our present study illustrated that lactobacilli could exert cholesterol lowering properties along the AMPK pathway, specifically via phosphorylation of AMPK that led to reduced expression of HMGCR.
  9. Basri DF, Lew LC, Muralitharan RV, Nagapan TS, Ghazali AR
    Dose Response, 2021 11 17;19(4):15593258211047651.
    PMID: 34840540 DOI: 10.1177/15593258211047651
    Pterostilbene is a potent antioxidant and anti-inflammatory agent. However, its chemopreventive effects via anti-tyrosinase activity and inhibitory effects on melanin content have not been reported previously. Hence, this study aimed to investigate the anti-melanogenic activity of pterostilbene on UVB-irradiated B164A5 mouse melanoma cells. The effects of pterostilbene and resveratrol on cell viability were determined by MTT assay, whereas melanin content and tyrosinase assay were employed to assess melanogenesis activity. Western blot analysis was performed to determine the tyrosinase expression. Based on the MTT assay, the IC50 value of pterostilbene on UVB-irradiated B164A5 cells was 34.0 ± 3.43 μM, in comparison to resveratrol (>100 μM). Next, 5 and 10 μM pterostilbene showed a significant dose-dependent inhibition (P < .01) of tyrosinase activity in UVB-irradiated B164A5 cells at 37.14 ± 2.71% and 58.36 ± 6.8%, respectively. The findings from the tyrosinase assay also confirmed the downregulation of tyrosinase expression in UVB-irradiated B164A5 cells as measured by Western blot analysis. Finally, 10 μM pterostilbene showed a significantly decreased melanin content (P < .01) in UVB-irradiated B164A5 cells, at 27.34 ± .98 μg/mL. In conclusion, pterostilbene showed anti-melanogenic activity that was 10 times more potent than resveratrol in the UVB-irradiated B164A5 cell.
  10. Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau AS, Lee BK, et al.
    J Appl Microbiol, 2021 Apr;130(4):1307-1322.
    PMID: 32638482 DOI: 10.1111/jam.14776
    AIM: The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system.

    METHODS AND RESULTS: The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P 

  11. Lye HS, Kato T, Low WY, Taylor TD, Prakash T, Lew LC, et al.
    J Biotechnol, 2017 Sep 19.
    PMID: 28935567 DOI: 10.1016/j.jbiotec.2017.09.007
    In this study, hypercholesterolemic mice fed with Lactobacillus fermentum FTDC 8312 after a seven-week feeding trial showed a reduction in serum total cholesterol (TC) levels, accompanied by a decrease in serum low-density lipoprotein cholesterol (LDL-C) levels, an increase in serum high-density lipoprotein cholesterol (HDL-C) levels, and a decreased ratio of apoB100:apoA1 when compared to those fed with control or a type strain, L. fermentum JCM 1173. These have contributed to a decrease in atherogenic indices (TC/HDL-C) of mice on the FTDC 8312 diet. Serum triglyceride (TG) levels of mice fed with FTDC 8312 and JCM 1173 were comparable to those of the controls. A decreased ratio of cholesterol and phospholipids (C/P) was also observed for mice fed with FTDC 8312, leading to a decreased number of spur red blood cells (RBC) formation in mice. Additionally, there was an increase in fecal TC, TG, and total bile acid levels in mice on FTDC 8312 diet compared to those with JCM 1173 and controls. The administration of FTDC 8312 also altered the gut microbiota population such as an increase in the members of genera Akkermansia and Oscillospira, affecting lipid metabolism and fecal bile excretion in the mice. Overall, we demonstrated that FTDC 8312 exerted a cholesterol lowering effect that may be attributed to gut microbiota modulation.
  12. Zaydi AI, Lew LC, Hor YY, Jaafar MH, Chuah LO, Yap KP, et al.
    Benef Microbes, 2020 Dec 02;11(8):753-766.
    PMID: 33245015 DOI: 10.3920/BM2019.0200
    Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.
  13. Lew LC, Hor YY, Jaafar MH, Lau ASY, Ong JS, Chuah LO, et al.
    Benef Microbes, 2019 Dec 09;10(8):883-892.
    PMID: 31965837 DOI: 10.3920/BM2019.0058
    This study aimed to evaluate the anti-ageing effects of different strains of lactobacilli putative probiotics on an ageing rat model as induced by D-galactose and a high fat diet. Male Sprague-Dawley rats were fed with high fat diet (54% kcal fat) and injected with D-galactose daily for 12 weeks to induce ageing. The effects of putative probiotic strains on age-related impairment such as telomere length, plasma lipid peroxidation, hepatic 5'adenosine monophosphate-activated protein kinase (AMPK) expression, as well as endurance performance were evaluated. Administration of statin, Lactobacillus plantarum DR7 (LP-DR7), Lactobacillus fermentum DR9 (LF-DR9), and Lactobacillus reuteri 8513d (LR-8513d) significantly reduced the shortening of telomere and increased the expression of AMPK subunit-α1 (P<0.05). Plasma lipid peroxidation was lower (P<0.05) in groups administered with statin and LF-DR9 as compared to the control. AMPK subunit-α2 was elevated in rats administered with LP-DR7 as compared to the control (P<0.05). Using an in vivo ageing rat model, the current study has illustrated the potentials of lactobacilli putative probiotics in alleviation of age-related impairment in a strain-dependent manner.
  14. Hor YY, Lew LC, Jaafar MH, Lau AS, Ong JS, Kato T, et al.
    Pharmacol Res, 2019 08;146:104312.
    PMID: 31207344 DOI: 10.1016/j.phrs.2019.104312
    Aging is closely associated with altered gut function and composition, in which elderly were reported with reduced gut microbiota diversity and increased incidence of age-related diseases. Probiotics have been shown to exert beneficial health-promoting effects through modulation of intestinal microflora biodiversity, thus the effects of probiotics administration on D-galactose (D-gal) senescence-induced rat were evaluated based on the changes in gut microbiota and metabolomic profiles. Upon senescence induction, the ratio of Firmicutes/ Bacteroidetes was significantly lowered, while treatment with Lactobacillus helveticus OFS 1515 and L. fermentum DR9 increased the ratio at the phylum level (P 
  15. Lew LC, Hor YY, Jaafar MH, Lau AS, Lee BK, Chuah LO, et al.
    Int J Mol Sci, 2020 Aug 16;21(16).
    PMID: 32824277 DOI: 10.3390/ijms21165872
    In this study, we hypothesized that different strains of Lactobacillus can alleviate hyperlipidemia and liver steatosis via activation of 5' adenosine monophosphate-activated protein kinase (AMPK), an enzyme that is involved in cellular energy homeostasis, in aged rats. Male rats were fed with a high-fat diet (HFD) and injected with D-galactose daily over 12 weeks to induce aging. Treatments included (n = 6) (i) normal diet (ND), (ii) HFD, (iii) HFD-statin (lovastatin 2 mg/kg/day), (iv) HFD-Lactobacillus fermentum DR9 (10 log CFU/day), (v) HFD-Lactobacillus plantarum DR7 (10 log CFU/day), and (vi) HFD-Lactobacillus reuteri 8513d (10 log CFU/day). Rats administered with statin, DR9, and 8513d reduced serum total cholesterol levels after eight weeks (p < 0.05), while the administration of DR7 reduced serum triglycerides level after 12 weeks (p < 0.05) as compared to the HFD control. A more prominent effect was observed from the administration of DR7, where positive effects were observed, ranging from hepatic gene expressions to liver histology as compared to the control (p < 0.05); downregulation of hepatic lipid synthesis and β-oxidation gene stearoyl-CoA desaturase 1 (SCD1), upregulation of hepatic sterol excretion genes of ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8), lesser degree of liver steatosis, and upregulation of hepatic energy metabolisms genes AMPKα1 and AMPKα2. Taken altogether, this study illustrated that the administration of selected Lactobacillus strains led to improved lipid profiles via activation of energy and lipid metabolisms, suggesting the potentials of Lactobacillus as a promising natural intervention for alleviation of cardiovascular and liver diseases.
  16. Ooi TC, Mat Ludin AF, Loke SC, Fiatarone Singh MA, Wong TW, Vytialingam N, et al.
    Gerontol Geriatr Med, 2021 08 12;7:23337214211038789.
    PMID: 34409130 DOI: 10.1177/23337214211038789
    Research has proven that aerobic exercise improves glucose homeostasis among patients with type 2 diabetes mellitus (T2DM). Elastic resistance (tube or band) is suggested as a good alternative for home-based strength training among older adults including those with T2DM due to its low cost, simplicity, portability, and versatility. This study aimed to measure the effects of 16-week home-based progressive resistance training (PRT), using a resistance tube on glucose homeostasis and cardiovascular risk factors among older adults with T2DM. A total of 70 participants aged 61.68 (5.50) years with T2DM were assigned to the intervention (n = 35) and control (n = 35) groups in this quasi-experimental trial. The intervention group underwent 16 weeks of home-based PRT using a resistance tube. Significant improvements in HbA1c (-1.34% point, p < 0.001), fasting blood glucose (-1.30 mmol/L, p < 0.001), and systolic blood pressure (-1.42 mmHg, p < 0.05) were observed after 16 weeks of intervention. However, no significant changes were observed in lipid profile, diastolic blood pressure, resting heart rate, and ankle-brachial index. The finding suggests that 16 weeks of home-based PRT using a resistance tube has the potential to improve glycemic control and reduce systolic blood pressure among older adults with T2DM and caused no adverse events.
  17. Lew LC, Hor YY, Jaafar MH, Lau AS, Khoo BY, Sasidharan S, et al.
    Probiotics Antimicrob Proteins, 2020 06;12(2):545-562.
    PMID: 31301059 DOI: 10.1007/s12602-019-09545-6
    Both aging and diet play an important role in influencing the gut ecosystem. Using premature senescent rats induced by D-galactose and fed with high-fat diet, this study aims to investigate the effects of different potential probiotic strains on the dynamic changes of fecal microbiome and metabolites. In this study, male Sprague-Dawley rats were fed with high-fat diet and injected with D-galactose for 12 weeks to induce aging. The effect of Lactobacillus plantarum DR7, L. fermentum DR9, and L. reuteri 8513d administration on the fecal microbiota profile, short-chain fatty acids, and water-soluble compounds were analyzed. It was found that the administration of the selected strains altered the gut microbiota diversity and composition, even at the phylum level. The fecal short-chain fatty acid content was also higher in groups that were administered with the potential probiotic strains. Analysis of the fecal water-soluble metabolites revealed that administration of L. plantarum DR7 and L. reuteri 8513d led to higher fecal content of compounds related to amino acid metabolism such as tryptophan, leucine, tyrosine, cysteine, methionine, valine, and lysine; while administration of L. fermentum DR9 led to higher prevalence of compounds related to carbohydrate metabolism such as erythritol, xylitol, and arabitol. In conclusion, it was observed that different strains of lactobacilli can cause difference alteration in the gut microbiota and the metabolites, suggesting the urgency to explore the specific metabolic impact of specific strains on the host.
  18. Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar MH, Choi SB, et al.
    Benef Microbes, 2019 Apr 19;10(4):355-373.
    PMID: 30882244 DOI: 10.3920/BM2018.0135
    Probiotics have been reported to exert beneficial effects along the gut-brain axis. This randomised, double-blind and placebo-controlled human study aimed to evaluate such properties of Lactobacillus plantarum DR7 and its accompanying mechanisms in stressed adults. One hundred and eleven (n=111; DR7 n=56, placebo n=55) stressed adults were recruited based on moderate stress levels using the PSS-10 questionnaire. The consumption of DR7 (1×109 cfu/day) for 12 weeks reduced symptoms of stress (P=0.024), anxiety (P=0.001), and total psychological scores (P=0.022) as early as 8 weeks among stressed adults compared to the placebo group as assessed by the DASS-42 questionnaire. Plasma cortisol level was reduced among DR7 subjects as compared to the placebo, accompanied by reduced plasma pro-inflammatory cytokines, such as interferon-γ and transforming growth factor-α and increased plasma anti-inflammatory cytokines, such as interleukin 10 (P<0.05). DR7 better improved cognitive and memory functions in normal adults (>30 years old), such as basic attention, emotional cognition, and associate learning (P<0.05), as compared to the placebo and young adults (<30 years old). The administration of DR7 enhanced the serotonin pathway, as observed by lowered expressions of plasma dopamine β-hydroxylase (DBH), tyrosine hydroxylase (TH), indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase accompanied by increased expressions of tryptophan hydroxylase-2 and 5-hydroxytryptamine receptor-6, while stabilising the dopamine pathway as observed via stabilised expressions of TH and DBH over 12 weeks as compared to the placebo (P<0.05). Our results indicated that DR7 fulfil the requirement of a probiotic strain as per recommendation of FAO/WHO and could be applicable as a natural strategy to improve psychological functions, cognitive health and memory in stressed adults.
  19. Lau AS, Yanagisawa N, Hor YY, Lew LC, Ong JS, Chuah LO, et al.
    Benef Microbes, 2018 Jan 29;9(1):61-70.
    PMID: 29065707 DOI: 10.3920/BM2017.0063
    This 10-months randomised, double-blind, parallel and placebo-controlled study evaluated the effects of Bifidobacterium longum BB536 on diarrhoea and/or upper respiratory illnesses in 520 healthy Malaysian pre-school children aged 2-6 years old. The subjects randomly received a one-gram sachet containing either BB536 (5×109 cfu) or placebo daily. Data analysis was performed on 219 subjects who fully complied over 10-months (placebo n=110, BB536 n=109). While BB536 did not exert significant effects against diarrhoea in children, Poisson regression with generalised estimating equations model indicated significant intergroup difference in the mean number of times of respiratory illnesses over 10 months. The duration of sore throat was reduced by 46% (P=0.018), with marginal reduction for duration of fever (reduced by 27%, P=0.084), runny nose (reduced by 15%, P=0.087) and cough (reduced by 16%, P=0.087) as compared to the placebo. Principal coordinate analysis at genus level of the gut microbiota revealed significant differences between 0 and 10 months in the BB536 group (P<0.01) but not in placebo group (P>0.05). The abundance of the genus Faecalibacterium which is associated with anti-inflammatory and immuno-modulatory properties was significantly higher in the BB536 group (P<0.05) compared to the placebo group. Altogether, our present study illustrated the potential protective effects of BB536 against upper respiratory illnesses in pre-school Malaysian children, with gut microbiota modulating properties.
  20. Lew LC, Hor YY, Yusoff NAA, Choi SB, Yusoff MSB, Roslan NS, et al.
    Clin Nutr, 2019 10;38(5):2053-2064.
    PMID: 30266270 DOI: 10.1016/j.clnu.2018.09.010
    BACKGROUND & AIMS: To investigate the effects of probiotic in alleviation of stress in stressed adults, along our focus to identify and justify strain specificity on selected health benefits with a precisely targeted population.

    METHODS: This 12-weeks randomized, double-blind and placebo-controlled study investigated the effects of a probiotic (Lactobacillus plantarum P8; 10 log CFU daily) on psychological, memory and cognition parameters in one hundred and three (P8 n = 52, placebo n = 51) stressed adults with mean age of 31.7 ± 11.1 years old. All subjects fulfilled the criteria of moderate stress upon diagnosis using the PSS-10 questionnaire.

    RESULTS: At the end of study, subjects on P8 showed reduced scores of stress (mean difference 2.94; 95% CI 0.08 to 5.73; P = 0.048), anxiety (mean difference 2.82; 95% CI 0.35 to 5.30; P = 0.031) and total score (mean difference 8.04; 95% CI 0.73 to 15.30; P = 0.041) as compared to placebo after 4-weeks, as assessed by the DASS-42 questionnaire. Although plasma cortisol levels were only marginally different between placebo and P8 (mean difference 3.28 ug/dl; 95% CI -7.09 to 0.52; P = 0.090), pro-inflammatory cytokines such as IFN-γ (mean difference 8.07 pg/ml; 95% CI -11.2 to -4.93; P 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links