During the period in which the Omicron coronavirus variant was rapidly spreading, the impact of the institutional-social-ecological dimensions on the case-fatality rate was rarely afforded attention. By adopting the diagnostic social-ecological system (SES) framework, the present paper aims to identify the impact of institutional-social-ecological factors on the case-fatality rate of COVID-19 in 134 countries and regions and test their spatial heterogeneity. Using statistical data from the Our World In Data website, the present study collected the cumulative case-fatality rate from 9 November 2021 to 23 June 2022, along with 11 country-level institutional-social-ecological factors. By comparing the goodness of fit of the multiple linear regression model and the multiscale geographically weighted regression (MGWR) model, the study demonstrated that the effects of SES factors exhibit significant spatial heterogeneity in relation to the case-fatality rate of COVID-19. After substituting the data into the MGWR model, six SES factors were identified with an R square of 0.470 based on the ascending effect size: COVID-19 vaccination policy, age dependency ratio, press freedom, gross domestic product (GDP), COVID-19 testing policy, and population density. The GWR model was used to test and confirm the robustness of the research results. Based on the analysis results, it is suggested that the world needs to meet four conditions to restore normal economic activity in the wake of the COVID-19 pandemic: (i) Countries should increase their COVID-19 vaccination coverage and maximize COVID-19 testing expansion. (ii) Countries should increase public health facilities available to provide COVID-19 treatment and subsidize the medical costs of COVID-19 patients. (iii) Countries should strictly review COVID-19 news reports and actively publicize COVID-19 pandemic prevention knowledge to the public through a range of media. (iv) Countries should adopt an internationalist spirit of cooperation and help each other to navigate the COVID-19 pandemic. The study further tests the applicability of the SES framework to the field of COVID-19 prevention and control based on the existing research, offering novel policy insights to cope with the COVID-19 pandemic that coexists with long-term human production and life for a long time.
This paper attempts to ascertain the impacts of population density on the spread and severity of COVID-19 in Malaysia. Besides describing the spatio-temporal contagion risk of the virus, ultimately, it seeks to test the hypothesis that higher population density results in exacerbated COVID-19 virulence in the community. The population density of 143 districts in Malaysia, as per data from Malaysia's 2010 population census, was plotted against cumulative COVID-19 cases and infection rates of COVID-19 cases, which were obtained from Malaysia's Ministry of Health official website. The data of these three variables were collected between 19 January 2020 and 31 December 2020. Based on the observations, districts that have high population densities and are highly inter-connected with neighbouring districts, whether geographically, socio-economically, or infrastructurally, tend to experience spikes in COVID-19 cases within weeks of each other. Using a parametric approach of the Pearson correlation, population density was found to have a moderately strong relationship to cumulative COVID-19 cases (p-value of 0.000 and R2 of 0.415) and a weak relationship to COVID-19 infection rates (p-value of 0.005 and R2 of 0.047). Consequently, we provide several non-pharmaceutical lessons, including urban planning strategies, as passive containment measures that may better support disease interventions against future contagious diseases.
Little attention has been paid to the impacts of institutional-human-environment dimensions on the outcome of Coronavirus disease 2019 (COVID-19) abatement. Through the diagnostic social-ecological system (SES) framework, this review paper aimed to investigate what and how the multifaceted social, physical, and governance factors affected the success level of seven selected Asia-Pacific countries (namely, South Korea, Japan, Malaysia, Singapore, Vietnam, Indonesia, and New Zealand) in combatting COVID-19. Drawing on statistical data from the Our World In Data website, we measured the COVID-19 severity or abatement success level of the countries on the basis of cumulative positive cases, average daily cases, and mortality rates for the period of 1 February 2020 to 30 June 2020. A qualitative content analysis using three codes, i.e., present (P), partially present (PP), and absent (A) for each SES attribute, as well as score calculation and rank ordering for government response effectiveness and the abatement success level across the countries, was undertaken. Not only did the standard coding process ensure data comparability but the data were deemed substantially reliable with Cohen's kappa of 0.76. Among 13 attributes of the SES factors, high facility adequacy, comprehensive COVID-19 testing policies, strict lockdown measures, imposition of penalty, and the high trust level towards the government seemed to be significant in determining the COVID-19 severity in a country. The results show that Vietnam (ranked first) and New Zealand (ranked second), with a high presence of attributes/design principles contributing to high-level government stringency and health and containment indices, successfully controlled the virus, while Indonesia (ranked seventh) and Japan (ranked sixth), associated with the low presence of design principles, were deemed least successful. Two lessons can be drawn: (i) having high number of P for SES attributes does not always mean a panacea for the pandemic; however, it would be detrimental to a country if it lacked them severely, and (ii) some attributes (mostly from the governance factor) may carry higher weightage towards explaining the success level. This comparative study providing an overview of critical SES attributes in relation to COVID-19 offers novel policy insights, thus helping policymakers devise more strategic, coordinated measures, particularly for effective country preparedness and response in addressing the current and the future health crisis.
Understanding particle dispersion characteristics in indoor environments is crucial for revising infection prevention guidelines through optimized engineering control. The secondary wake flow induced by human movements can disrupt the local airflow field, which enhances particle dispersion within indoor spaces. Over the years, researchers have explored the impact of human movement on indoor air quality (IAQ) and identified noteworthy findings. However, there is a lack of a comprehensive review that systematically synthesizes and summarizes the research in this field. This paper aims to fill that gap by providing an overview of the topic and shedding light on emerging areas. Through a systematic review of relevant articles from the Web of Science database, the study findings reveal an emerging trend and current research gaps on the topic titled Impact of Human Movement in Indoor Airflow (HMIA). As an overview, this paper explores the effect of human movement on human microenvironments and particle resuspension in indoor environments. It delves into the currently available methods for assessing the HMIA and proposes the integration of IoT sensors for potential indoor airflow monitoring. The present study also emphasizes incorporating human movement into ventilation studies to achieve more realistic predictions and yield more practical measures. This review advances knowledge and holds significant implications for scientific and public communities. It identifies future research directions and facilitates the development of effective ventilation strategies to enhance indoor environments and safeguard public health.
Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 μm), and comprehensive human exposure risk assessments.