Displaying all 2 publications

Abstract:
Sort:
  1. Oon CE, Bridges E, Sheldon H, Sainson RCA, Jubb A, Turley H, et al.
    Oncotarget, 2017 Jun 20;8(25):40115-40131.
    PMID: 28445154 DOI: 10.18632/oncotarget.16969
    Delta-like 4 (DLL4) and Jagged1 (JAG1) are two key Notch ligands implicated in tumour angiogenesis. They were shown to have opposite effects on mouse retinal and adult regenerative angiogenesis. In tumours, both ligands are upregulated but their relative effects and interactions in tumour biology, particularly in tumour response to therapeutic intervention are unclear. Here we demonstrate that DLL4 and JAG1 displayed equal potency in stimulating Notch target genes in HMEC-1 endothelial cells but had opposing effects on sprouting angiogenesis in vitro. Mouse DLL4 or JAG1 expressed in glioblastoma cells decreased tumour cell proliferation in vitro but promoted tumour growth in vivo. mDLL4-expressing tumours showed fewer but larger vessels whereas mJAG1-tumours produced more vessels. In both tumour types pericyte coverage was decreased but the vessels were more perfused. Both ligands increased tumour resistance towards anti-VEGF therapy but the resistance was higher in mDLL4-tumours versus mJAG1-tumours. However, their sensitivity to the therapy was restored by blocking Notch signalling with dibenzazepine. Importantly, anti-DLL4 antibody blocked the effect of JAG1 on tumour growth and increased vessel branching in vivo. The mechanism behind the differential responsiveness was due to a positive feedback loop for DLL4-Notch signalling, rendering DLL4 more dominant in activating Notch signalling in the tumour microenvironment. We concluded that DLL4 and JAG1 promote tumour growth by modulating tumour angiogenesis via different mechanisms. JAG1 is not antagonistic but utilises DLL4 in tumour angiogenesis. The results suggest that anti-JAG1 therapy should be explored in conjunction with anti-DLL4 treatment in developing anti-Notch therapies in clinics.
  2. Tan KL, Haider S, Zois CE, Hu J, Turley H, Leek R, et al.
    Transl Oncol, 2024 Nov;49:102106.
    PMID: 39182365 DOI: 10.1016/j.tranon.2024.102106
    Current prognostic biomarkers fall short in stratifying Oestrogen receptor (ER)-negative breast cancer patients regarding tumour progression risk at diagnosis. The role of AIPL1 in activating its tumour suppressor client protein, NEDD8 Ultimate Buster-1 (NUB1) remains unknown in cancer. Our study demonstrated how downregulated AIPL1 results in the deactivated NUB1 protein under hypoxic conditions. We examined the AIPL1-NUB1 pathwayin vitro using cell lines i.e. MCF-7, MDA-MB-231, RCC4 etc. NUB1 expression was assessed using Oncomine, and cBioPortal was performed to assess NUB1's prognostic significance in human cancers. In the John Radcliffe Hospital cohort (n = 122), immunohistochemistry analysis revealed downregulated AIPL1 (Log2 fold change=-0.28; p < 0.001) and upregulated NUB1 transcripts (Log2 fold change=0.59; p < 0.001) compared to adjacent normal tissues. In severe chronic hypoxia, multimerised AIPL1 localisedin the cytoplasm while NUB1 protein migrated to the nucleus, where the absence of NUB1 nuclear localisation led to cell cycle arrest. Biopsies showed that patients with lower cytoplasmic NUB1 expression (n = 57) had poorer overall survival compared to those with higher cytoplasmic expression (n = 57), HR=1.78; 95 % CI=1.01-3.35, p = 0.048. Low NUB1 protein levels in both normoxic and hypoxic conditions were associated with cell cycle arrest and upregulation ofp21 and p27 in breast cancer cell lines, correlating significantly withpoorer survival outcomes in all breast cancer and ER-negative breast cancer patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links