Displaying all 7 publications

Abstract:
Sort:
  1. Lazarev VN, Shkarupeta MM, Titova GA, Kostrjukova ES, Akopian TA, Govorun VM
    Biochem Biophys Res Commun, 2005 Dec 16;338(2):946-50.
    PMID: 16246304
    A plasmid construct was designed in which the gene of antimicrobial peptide melittin is controlled by the tetracycline-responsive promoter of human cytomegalovirus, aided by a constitutively expressed trans-activator protein gene. Its vaginal administration and induction of melittin gene transcription with doxycycline markedly suppressed subsequent genital tract infection of mice by Mycoplasma hominis and Chlamydia trachomatis. At least half of the melittin-protected animals proved free of either pathogen within 3-4 weeks. Recombinant plasmids expressing genes of antimicrobial peptides hold much promise as agents for prevention and control of urogenital latent infections.
  2. Lazarev VN, Parfenova TM, Gularyan SK, Misyurina OY, Akopian TA, Govorun VM
    Int J Antimicrob Agents, 2002 Feb;19(2):133-7.
    PMID: 11850166
    As the number of pathogenic microbial strains resistant to different antibiotics increases, amphipathic peptides with antimicrobial activity are promising agents for the therapy of infectious diseases. This work deals with the effect of an amphipathic antimicrobial peptide, melittin, expressed within recombinant plasmid vectors, on infection with urogenital pathogens Chlamydia trachomatis and Mycoplasma hominis in HeLa cell culture. Recombinant plasmid constructs with the melittin gene under the control of the tetracycline-responsive promoter of human cytomegalovirus were obtained. We showed inhibition of C. trachomatis and M. hominis infection after the introduction of recombinant plasmid vectors expressing the melittin gene into the infected cell culture.
  3. Levitskiy SA, Sycheva AM, Kharlampieva DD, Oberto J, Kamashev DE, Serebryakova MV, et al.
    Biochimie, 2011 Jul;93(7):1102-9.
    PMID: 21443922 DOI: 10.1016/j.biochi.2011.03.005
    HU is a most abundant DNA-binding protein in bacteria. This protein is conserved either in its heterodimeric form or in one of its homodimeric forms in all bacteria, in plant chloroplasts, and in some viruses. HU protein non-specifically binds and bends DNA as a hetero- or homodimer and can participate in DNA supercoiling and DNA condensation. It also takes part in some DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows some specificity to cruciform DNA and to repair intermediates, e.g., nick, gap, bulge, 3'-overhang, etc. To understand the features of HU binding to DNA and repair intermediates, a fast and easy HU proteins purification procedure is required. Here we report overproduction and purification of the HU homodimers. The method of HU purification allows obtaining a pure recombinant non-tagged protein cloned in Escherichia coli. We applied this method for purification of Acholeplasma laidlawii HU and demonstrated that this protein possesses a DNA-binding activity and is free of contaminating nuclease activity. Besides that we have shown that expression of A. laidlawii ihf_hu gene in a slow-growing hupAB E. coli strain restores the wild-type growth indicating that aclHU can perform the basic functions of E. coli HU in vivo.
  4. Svetlova J, Gustin D, Manuvera V, Shirokov D, Shokina V, Prusakov K, et al.
    Int J Mol Sci, 2022 Oct 30;23(21).
    PMID: 36362010 DOI: 10.3390/ijms232113220
    Mutations in surface proteins enable emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to escape a substantial fraction of neutralizing antibodies and may thus weaken vaccine-driven immunity. To compare available vaccines and justify revaccination, rapid evaluation of antibody (Ab) responses to currently circulating SARS-CoV-2 variants of interest (VOI) and concern (VOC) is needed. Here, we developed a multiplex protein microarray-based system for rapid profiling of anti-SARS-CoV-2 Ab levels in human sera. The microarray system was validated using sera samples from SARS-CoV-2-free donors and those diagnosed with COVID-19 based on PCR and enzyme immunoassays. Microarray-based profiling of vaccinated donors revealed a substantial difference in anti-VOC Ab levels elicited by the replication-deficient adenovirus vector-base (Sputnik V) and whole-virion (CoviVac Russia COVID-19) vaccines. Whole-virion vaccine-induced Abs showed minor but statistically significant cross-reactivity with the human blood coagulation factor 1 (fibrinogen) and thrombin. However, their effects on blood clotting were negligible, according to thrombin time tests, providing evidence against the concept of pronounced cross-reactivity-related side effects of the vaccine. Importantly, all samples were collected in the pre-Omicron period but showed noticeable responses to the receptor-binding domain (RBD) of the Omicron spike protein. Thus, using the new express Ab-profiling system, we confirmed the inter-variant cross-reactivity of the anti-SARS-CoV-2 Abs and demonstrated the relative potency of the vaccines against new VOCs.
  5. Tsvetkov V, Varizhuk A, Kozlovskaya L, Shtro A, Lebedeva O, Komissarov A, et al.
    Biochimie, 2021 Dec;191:27-32.
    PMID: 34389380 DOI: 10.1016/j.biochi.2021.08.003
    In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.
  6. Alexeev D, Kostrjukova E, Aliper A, Popenko A, Bazaleev N, Tyakht A, et al.
    J Proteome Res, 2012 Jan 1;11(1):224-36.
    PMID: 22129229 DOI: 10.1021/pr2008626
    To date, no genome of any of the species from the genus Spiroplasma has been completely sequenced. Long repetitive sequences similar to mobile units present a major obstacle for current genome sequencing technologies. Here, we report the assembly of the Spiroplasma melliferum KC3 genome into 4 contigs, followed by proteogenomic annotation and metabolic reconstruction based on the discovery of 521 expressed proteins and comprehensive metabolomic profiling. A systems approach allowed us to elucidate putative pathogenicity mechanisms and to discover major virulence factors, such as Chitinase utilization enzymes and toxins never before reported for insect pathogenic spiroplasmas.
  7. Lazarev VN, Levitskii SA, Basovskii YI, Chukin MM, Akopian TA, Vereshchagin VV, et al.
    J Bacteriol, 2011 Sep;193(18):4943-53.
    PMID: 21784942 DOI: 10.1128/JB.05059-11
    We present the complete genome sequence and proteogenomic map for Acholeplasma laidlawii PG-8A (class Mollicutes, order Acholeplasmatales, family Acholeplasmataceae). The genome of A. laidlawii is represented by a single 1,496,992-bp circular chromosome with an average G+C content of 31 mol%. This is the longest genome among the Mollicutes with a known nucleotide sequence. It contains genes of polymerase type I, SOS response, and signal transduction systems, as well as RNA regulatory elements, riboswitches, and T boxes. This demonstrates a significant capability for the regulation of gene expression and mutagenic response to stress. Acholeplasma laidlawii and phytoplasmas are the only Mollicutes known to use the universal genetic code, in which UGA is a stop codon. Within the Mollicutes group, only the sterol-nonrequiring Acholeplasma has the capacity to synthesize saturated fatty acids de novo. Proteomic data were used in the primary annotation of the genome, validating expression of many predicted proteins. We also detected posttranslational modifications of A. laidlawii proteins: phosphorylation and acylation. Seventy-four candidate phosphorylated proteins were found: 16 candidates are proteins unique to A. laidlawii, and 11 of them are surface-anchored or integral membrane proteins, which implies the presence of active signaling pathways. Among 20 acylated proteins, 14 contained palmitic chains, and six contained stearic chains. No residue of linoleic or oleic acid was observed. Acylated proteins were components of mainly sugar and inorganic ion transport systems and were surface-anchored proteins with unknown functions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links