Habitat destruction and overhunting are two major drivers of mammal population declines and extinctions in tropical forests. The construction of roads can be a catalyst for these two threats. In Southeast Asia, the impacts of roads on mammals have not been well-documented at a regional scale. Before evidence-based conservation strategies can be developed to minimize the threat of roads to endangered mammals within this region, we first need to locate where and how roads are contributing to the conversion of their habitats and illegal hunting in each country. We interviewed 36 experts involved in mammal research from seven Southeast Asian countries to identify roads that are contributing the most, in their opinion, to habitat conversion and illegal hunting. Our experts highlighted 16 existing and eight planned roads - these potentially threaten 21% of the 117 endangered terrestrial mammals in those countries. Apart from gathering qualitative evidence from the literature to assess their claims, we demonstrate how species-distribution models, satellite imagery and animal-sign surveys can be used to provide quantitative evidence of roads causing impacts by (1) cutting through habitats where endangered mammals are likely to occur, (2) intensifying forest conversion, and (3) contributing to illegal hunting and wildlife trade. To our knowledge, ours is the first study to identify specific roads threatening endangered mammals in Southeast Asia. Further through highlighting the impacts of roads, we propose 10 measures to limit road impacts in the region.
Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'.
The Heart of Borneo initiative has promoted the integration of protected areas and sustainably-managed forests across Malaysia, Indonesia, and Brunei. Recently, however, member states of the Heart of Borneo have begun pursuing ambitious unilateral infrastructure-development schemes to accelerate economic growth, jeopardizing the underlying goal of trans-boundary integrated conservation. Focusing on Sabah, Malaysia, we highlight conflicts between its Pan-Borneo Highway scheme and the regional integration of protected areas, unprotected intact forests, and conservation-priority forests. Road developments in southern Sabah in particular would drastically reduce protected-area integration across the northern Heart of Borneo region. Such developments would separate two major clusters of protected areas that account for one-quarter of all protected areas within the Heart of Borneo complex. Sabah has proposed forest corridors and highway underpasses as means of retaining ecological connectivity in this context. Connectivity modelling identified numerous overlooked areas for connectivity rehabilitation among intact forest patches following planned road development. While such 'linear-conservation planning' might theoretically retain up to 85% of intact-forest connectivity and integrate half of the conservation-priority forests across Sabah, in reality it is very unlikely to achieve meaningful ecological integration. Moreover, such measure would be exceedingly costly if properly implemented-apparently beyond the operating budget of relevant Malaysian authorities. Unless critical road segments are cancelled, planned infrastructure will fragment important conservation landscapes with little recourse for mitigation. This likelihood reinforces earlier calls for the legal recognition of the Heart of Borneo region for conservation planning as well as for enhanced tri-lateral coordination of both conservation and development.
The rapid expansion of oil palm cultivation in the Neotropics has generated great debate around possible biodiversity impacts. Colombia, for example, is the largest producer of oil palm in the Americas, but the effects of oil palm cultivation on native fauna are poorly understood. Here, we compared how richness, abundance and composition of terrestrial mammal species differ between oil palm plantations and riparian forest in the Colombian Llanos region. Further, we determined the relationships and influence of landscape and habitat level variables on those metrics. We found that species richness and composition differed significantly between riparian forest and oil palm, with site level richness inside oil palm plantations 47% lower, on average, than in riparian forest. Within plantations, mammalian species richness was strongly negatively correlated with cattle abundance, and positively correlated with the density of undergrowth vegetation. Forest structure characteristics appeared to have weak and similar effects on determining mammal species richness and composition along riparian forest strips. Composition at the landscape level was significantly influenced by cover type, percentage of remaining forest and the distance to the nearest town, whereas within oil palm sites, understory vegetation, cattle relative abundance, and canopy cover had significant effects on community composition. Species specific abundance responses varied between land cover types, with oil palm having positive effects on mesopredators, insectivores and grazers. Our findings suggest that increasing habitat complexity, avoiding cattle and retaining native riparian forest-regardless of its structure-inside oil palm-dominated landscapes would help support higher native mammal richness and abundance at both local and landscape scales.
While the conservation role of remaining natural habitats in anthropogenic landscapes is clear, the degree to which agricultural matrices impose limitations to animal use is not well understood, but vital to assess species' resilience to land use change. Using an occupancy framework, we evaluated how oil palm plantations affect the occurrence and habitat use of terrestrial mammals in the Colombian Llanos. Further, we evaluated the effect of undergrowth vegetation and proximity to forest on habitat use within plantations. Most species exhibited restricted distributions across the study area, especially in oil palm plantations. Habitat type strongly influenced habitat use of four of the 12 more widely distributed species with oil palm negatively affecting species such as capybara and naked-tailed armadillo. The remaining species showed no apparent effect of habitat type, but oil palm and forest use probabilities varied among species. Overall, generalist mesocarnivores, white-tailed deer, and giant anteater were more likely to use oil palm while the remaining species, including ocelot and lesser anteater, showed preferences for forest. Distance to nearest forest had mixed effects on species habitat use, while understory vegetation facilitated the presence of species using oil palm. Our findings suggest that allowing undergrowth vegetation inside plantations and maintaining nearby riparian corridors would increase the likelihood of terrestrial mammals' occurrence within oil palm landscapes.
The forests of Borneo-the third largest island on the planet-sustain some of the highest biodiversity and carbon storage in the world. The forests also provide vital ecosystem services and livelihood support for millions of people in the region, including many indigenous communities. The Pan-Borneo Highway and several hydroelectric dams are planned or already under construction in Sarawak, a Malaysian state comprising part of the Borneo. This development seeks to enhance economic growth and regional connectivity, support community access to services, and promote industrial development. However, the implications of the development of highway and dams for forest integrity, biodiversity and ecosystem services remained largely unreported. We assessed these development projects using fine-scale biophysical and environmental data and found several environmental and socioeconomic risks associated with the projects. The highway and hydroelectric dam projects will impact 32 protected areas including numerous key habitats of threatened species such as the proboscis monkey (Nasalis larvatus), Sarawak surili (Presbytis chrysomelas), Bornean orangutans (Pongo pygmaeus) and tufted ground squirrel (Rheithrosciurus macrotis). Under its slated development trajectory, the local and trans-national forest connectivity between Malaysian Borneo and Indonesian Borneo would also be substantially diminished. Nearly ~161 km of the Pan-Borneo Highway in Sarawak will traverse forested landscapes and ~55 km will traverse carbon-rich peatlands. The 13 hydroelectric dam projects will collectively impact ~1.7 million ha of forest in Sarawak. The consequences of planned highway and hydroelectric dams construction will increase the carbon footprint of development in the region. Moreover, many new road segments and hydroelectric dams would be built on steep slopes in high-rainfall zones and forested areas, increasing both construction and ongoing maintenance costs. The projects would also alter livelihood activities of downstream communities, risking their long-term sustainability. Overall, our findings identify major economic, social and environmental risks for several planned road segments in Sarawak-such as those between Telok Melano and Kuching; Sibu and Bintulu; and in the Lambir, Limbang and Lawas regions-and dam projects-such as Tutoh, Limbang, Lawas, Baram, Linau, Ulu Air and Baleh dams. Such projects need to be reviewed to ensure they reflect Borneo's unique environmental and forest ecosystem values, the aspirations of local communities and long-term sustainability of the projects rather than being assessed solely on their short-term economic returns.
The number and extent of roads will expand dramatically this century. Globally, at least 25 million kilometres of new roads are anticipated by 2050; a 60% increase in the total length of roads over that in 2010. Nine-tenths of all road construction is expected to occur in developing nations, including many regions that sustain exceptional biodiversity and vital ecosystem services. Roads penetrating into wilderness or frontier areas are a major proximate driver of habitat loss and fragmentation, wildfires, overhunting and other environmental degradation, often with irreversible impacts on ecosystems. Unfortunately, much road proliferation is chaotic or poorly planned, and the rate of expansion is so great that it often overwhelms the capacity of environmental planners and managers. Here we present a global scheme for prioritizing road building. This large-scale zoning plan seeks to limit the environmental costs of road expansion while maximizing its benefits for human development, by helping to increase agricultural production, which is an urgent priority given that global food demand could double by mid-century. Our analysis identifies areas with high environmental values where future road building should be avoided if possible, areas where strategic road improvements could promote agricultural development with relatively modest environmental costs, and 'conflict areas' where road building could have sizeable benefits for agriculture but with serious environmental damage. Our plan provides a template for proactively zoning and prioritizing roads during the most explosive era of road expansion in human history.
Strong global demand for tropical timber and agricultural products has driven large-scale logging and subsequent conversion of tropical forests. Given that the majority of tropical landscapes have been or will likely be logged, the protection of biodiversity within tropical forests thus depends on whether species can persist in these economically exploited lands, and if species cannot persist, whether we can protect enough primary forest from logging and conversion. However, our knowledge of the impact of logging and conversion on biodiversity is limited to a few taxa, often sampled in different locations with complex land-use histories, hampering attempts to plan cost-effective conservation strategies and to draw conclusions across taxa. Spanning a land-use gradient of primary forest, once- and twice-logged forests, and oil palm plantations, we used traditional sampling and DNA metabarcoding to compile an extensive data set in Sabah, Malaysian Borneo for nine vertebrate and invertebrate taxa to quantify the biological impacts of logging and oil palm, develop cost-effective methods of protecting biodiversity, and examine whether there is congruence in response among taxa. Logged forests retained high species richness, including, on average, 70% of species found in primary forest. In contrast, conversion to oil palm dramatically reduces species richness, with significantly fewer primary-forest species than found on logged forest transects for seven taxa. Using a systematic conservation planning analysis, we show that efficient protection of primary-forest species is achieved with land portfolios that include a large proportion of logged-forest plots. Protecting logged forests is thus a cost-effective method of protecting an ecologically and taxonomically diverse range of species, particularly when conservation budgets are limited. Six indicator groups (birds, leaf-litter ants, beetles, aerial hymenopterans, flies, and true bugs) proved to be consistently good predictors of the response of the other taxa to logging and oil palm. Our results confidently establish the high conservation value of logged forests and the low value of oil palm. Cross-taxon congruence in responses to disturbance also suggests that the practice of focusing on key indicator taxa yields important information of general biodiversity in studies of logging and oil palm.
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.