Displaying all 2 publications

Abstract:
Sort:
  1. Wong WW, Greening C, Shelley G, Lappan R, Leung PM, Kessler A, et al.
    Sci Total Environ, 2021 Oct 10;790:147749.
    PMID: 34091344 DOI: 10.1016/j.scitotenv.2021.147749
    The permeable (sandy) sediments that dominate the world's coastlines and continental shelves are highly exposed to nitrogen pollution, predominantly due to increased urbanisation and inefficient agricultural practices. This leads to eutrophication, accumulation of drift algae and changes in the reactions of nitrogen, including the potential to produce the greenhouse gas nitrous oxide (N2O). Nitrogen pollution in coastal systems has been identified as a global environmental issue, but it remains unclear how this nitrogen is stored and processed by permeable sediments. We investigated the interaction of drift algae biomass and nitrate (NO3-) exposure on nitrogen cycling in permeable sediments that were impacted by high nitrogen loading. We treated permeable sediments with increasing quantities of added macroalgal material and NO3- and measured denitrification, dissimilatory NO3- reduction to ammonium (DNRA), anammox, and nitrous oxide (N2O) production, alongside abundance of marker genes for nitrogen cycling and microbial community composition by metagenomics. We found that the presence of macroalgae dramatically increased DNRA and N2O production in sediments without NO3- treatment, concomitant with increased abundance of nitrate-ammonifying bacteria (e.g. Shewanella and Arcobacter). Following NO3- treatment, DNRA and N2O production dropped substantially while denitrification increased. This is explained by a shift in the relative abundance of nitrogen-cycling microorganisms under different NO3- exposure scenarios. Decreases in both DNRA and N2O production coincided with increases in the marker genes for each step of the denitrification pathway (narG, nirS, norB, nosZ) and a decrease in the DNRA marker gene nrfA. These shifts were accompanied by an increased abundance of facultative denitrifying lineages (e.g. Pseudomonas and Marinobacter) with NO3- treatment. These findings identify new feedbacks between eutrophication and greenhouse gas emissions, and in turn have potential to inform biogeochemical models and mitigation strategies for marine eutrophication.
  2. Leder K, Openshaw JJ, Allotey P, Ansariadi A, Barker SF, Burge K, et al.
    BMJ Open, 2021 01 08;11(1):e042850.
    PMID: 33419917 DOI: 10.1136/bmjopen-2020-042850
    INTRODUCTION: Increasing urban populations have led to the growth of informal settlements, with contaminated environments linked to poor human health through a range of interlinked pathways. Here, we describe the design and methods for the Revitalising Informal Settlements and their Environments (RISE) study, a transdisciplinary randomised trial evaluating impacts of an intervention to upgrade urban informal settlements in two Asia-Pacific countries.

    METHODS AND ANALYSIS: RISE is a cluster randomised controlled trial among 12 settlements in Makassar, Indonesia, and 12 in Suva, Fiji. Six settlements in each country have been randomised to receive the intervention at the outset; the remainder will serve as controls and be offered intervention delivery after trial completion. The intervention involves a water-sensitive approach, delivering site-specific, modular, decentralised infrastructure primarily aimed at improving health by decreasing exposure to environmental faecal contamination. Consenting households within each informal settlement site have been enrolled, with longitudinal assessment to involve health and well-being surveys, and human and environmental sampling. Primary outcomes will be evaluated in children under 5 years of age and include prevalence and diversity of gastrointestinal pathogens, abundance and diversity of antimicrobial resistance (AMR) genes in gastrointestinal microorganisms and markers of gastrointestinal inflammation. Diverse secondary outcomes include changes in microbial contamination; abundance and diversity of pathogens and AMR genes in environmental samples; impacts on ecological biodiversity and microclimates; mosquito vector abundance; anthropometric assessments, nutrition markers and systemic inflammation in children; caregiver-reported and self-reported health symptoms and healthcare utilisation; and measures of individual and community psychological, emotional and economic well-being. The study aims to provide proof-of-concept evidence to inform policies on upgrading of informal settlements to improve environments and human health and well-being.

    ETHICS: Study protocols have been approved by ethics boards at Monash University, Fiji National University and Hasanuddin University.

    TRIAL REGISTRATION NUMBER: ACTRN12618000633280; Pre-results.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links