Displaying all 6 publications

Abstract:
Sort:
  1. Fujita M, Lévêque JM, Komatsu N, Kimura T
    Ultrason Sonochem, 2015 Nov;27:247-51.
    PMID: 26186842 DOI: 10.1016/j.ultsonch.2015.04.030
    A novel, mild "sono-halogenation" of various aromatic compounds with potassium halide was investigated under ultrasound in a biphasic carbon tetrachloride/water medium. The feasibility study was first undertaken with the potassium bromide and then extended to chloride and iodide analogues. This methodology could be considered as a new expansion of the ultrasonic advanced oxidation processes (UAOPs) into a synthetic aspect as the developed methodology is linked to the sonolytic disappearance of carbon tetrachloride. Advantages of the present method are not only that the manipulation of the bromination is simple and green, but also that the halogenating agents used are readily available, inexpensive, and easy-handling.
  2. Ghanem OB, Mutalib MIA, Lévêque JM, El-Harbawi M
    Chemosphere, 2017 Mar;170:242-250.
    PMID: 28006757 DOI: 10.1016/j.chemosphere.2016.12.003
    Ionic liquids (ILs) are class of solvent whose properties can be modified and tuned to meet industrial requirements. However, a high number of potentially available cations and anions leads to an even increasing members of newly-synthesized ionic liquids, adding to the complexity of understanding on their impact on aquatic organisms. Quantitative structure activity∖property relationship (QSAR∖QSPR) technique has been proven to be a useful method for toxicity prediction. In this work,σ-profile descriptors were used to build linear and non-linear QSAR models to predict the ecotoxicities of a wide variety of ILs towards bioluminescent bacterium Vibrio fischeri. Linear model was constructed using five descriptors resulting in high accuracy prediction of 0.906. The model performance and stability were ascertained using k-fold cross validation method. The selected descriptors set from the linear model was then used in multilayer perceptron (MLP) technique to develop the non-linear model, the accuracy of the model was further enhanced achieving high correlation coefficient with the lowest value being 0.961 with the highest mean square error of 0.157.
  3. Hassan S, Duclaux L, Lévêque JM, Reinert L, Farooq A, Yasin T
    J Environ Manage, 2014 Nov 1;144:108-17.
    PMID: 24929502 DOI: 10.1016/j.jenvman.2014.05.005
    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.
  4. Hossain MI, El-Harbawi M, Alitheen NB, Noaman YA, Lévêque JM, Yin CY
    Ecotoxicol Environ Saf, 2013 Jan;87:65-9.
    PMID: 23107478 DOI: 10.1016/j.ecoenv.2012.09.020
    Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity.
  5. Quraishi KS, Bustam MA, Krishnan S, Aminuddin NF, Azeezah N, Ghani NA, et al.
    Chemosphere, 2017 Oct;184:642-651.
    PMID: 28624742 DOI: 10.1016/j.chemosphere.2017.06.037
    A promising method of Carbon dioxide (CO2) valorization is to use green microalgae photosynthesis to process biofuel. Two Phase Partitioning Bioreactors (TPPBR) offer the possibility to use non-aqueous phase liquids (NAPL) to enhance CO2 solubility; thus making CO2 available to maximize algae growth. This requires relatively less toxic hydrophobic Ionic Liquids (ILs) that comprise a new class of ionic compounds with remarkable physicochemical properties and thus qualifies them as NAPL candidates. This paper concerns the synthesis of ILs with octyl and butyl chains as well as different cations containing aromatic (imidazolium, pyridinium) and non-aromatic (piperidinum, pyrrolidinium) rings for CO2 absorption studies. The authors measured their respective toxicity levels on microalgae species, specifically, Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii. Results revealed that octyl-based ILs were more toxic than butyl-based analogues. Such was the case for bmim-PF6 at double saturation with an absorbance of 0.11, compared to Omim-PF6 at 0.17, bmim-NTf2 at 0.02, and Omim-NTf2 at 0.14, respectively. CO2 uptake results for ILs bearing octyl-based chains compared to the butyl analog were 54% (nCO2/nIL) (i.e., moles of CO2 moles of IL) and 38% (nCO2/nIL), respectively. Conclusively, 1-butyl-1-methylpiperidinium absorbed 13% (nCO2/nIL) and appeared the least toxic, having an absorbance of 0.25 at 688 nm (double saturation at 7 d) compared to 1-butyl-3-methylimidazolium, which showed the highest toxicity with zero absorbance. Accordingly, these findings suggest that 1-butyl-1-methylpiperidinium is capable of transporting CO2 to a system containing green microalgae without causing significant harm; thus allowing its use in TPPBR technology.
  6. Ghanem OB, Shah SN, Lévêque JM, Mutalib MIA, El-Harbawi M, Khan AS, et al.
    Chemosphere, 2018 Mar;195:21-28.
    PMID: 29248749 DOI: 10.1016/j.chemosphere.2017.12.018
    Over the past decades, Ionic liquids (ILs) have gained considerable attention from the scientific community in reason of their versatility and performance in many fields. However, they nowadays remain mainly for laboratory scale use. The main barrier hampering their use in a larger scale is their questionable ecological toxicity. This study investigated the effect of hydrophobic and hydrophilic cyclic cation-based ILs against four pathogenic bacteria that infect humans. For that, cations, either of aromatic character (imidazolium or pyridinium) or of non-aromatic nature, (pyrrolidinium or piperidinium), were selected with different alkyl chain lengths and combined with both hydrophilic and hydrophobic anionic moieties. The results clearly demonstrated that introducing of hydrophobic anion namely bis((trifluoromethyl)sulfonyl)amide, [NTF2] and the elongation of the cations substitutions dramatically affect ILs toxicity behaviour. The established toxicity data [50% effective concentration (EC50)] along with similar endpoint collected from previous work against Aeromonas hydrophila were combined to developed quantitative structure-activity relationship (QSAR) model for toxicity prediction. The model was developed and validated in the light of Organization for Economic Co-operation and Development (OECD) guidelines strategy, producing good correlation coefficient R2 of 0.904 and small mean square error (MSE) of 0.095. The reliability of the QSAR model was further determined using k-fold cross validation.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links