Displaying all 2 publications

Abstract:
Sort:
  1. Thomas A, Rajesh EK, Kumar DS
    Phytother Res, 2016 Mar;30(3):357-66.
    PMID: 26749336 DOI: 10.1002/ptr.5559
    Tinospora crispa is a medicinal plant belonging to the botanical family Menispermiaceae. The plant is widely distributed in Southeast Asia and the northeastern region of India. A related species Tinospora cordifolia is used in Ayurveda for treating a large spectrum of diseases. Traditional healers of Thailand, Malaysia, Guyana, Bangladesh and the southern Indian province of Kerala use this plant in the treatment of diabetes. Many diterpenes, triterpenes, phytosteroids, alkaloids and their glycosides have been isolated from T. crispa. Cell culture and animal studies suggest that the herb stimulates secretion of insulin from β-cells. It also causes dose-dependent and time-dependent enhancement of glucose uptake in muscles. However, in view of the reported hepatotoxicity, this herb may be used with caution. This article reviews the animal studies and human clinical trials carried out using this herb. Areas of future research are also identified.
  2. Goutham S, Bykkam S, Sadasivuni KK, Kumar DS, Ahmadipour M, Ahmad ZA, et al.
    Mikrochim Acta, 2017 12 20;185(1):69.
    PMID: 29594642 DOI: 10.1007/s00604-017-2537-0
    A nanocomposite consisting of a few layers of graphene (FLG) and tin dioxide (SnO2) was prepared by ultrasound-assisted synthesis. The uniform SnO2 nanoparticles (NPs) on the FLG were characterized by X-ray diffraction in terms of lattice and phase structure. The functional groups present in the composite were analyzed by FTIR. Electron microscopy (HR-TEM and FE-SEM) was used to study the morphology. The effect of the fraction of FLG present in the nanocomposite was investigated. Sensitivity, selectivity and reproducibility towards resistive sensing of liquid propane gas (LPG) was characterized by the I-V method. The sensor with 1% of FLG on SnO2 operated at a typical voltage of 1 V performs best in giving a rapid and sensitive response even at 27 °C. This proves that the operating temperature of such sensors can be drastically decreased which is in contrast to conventional metal oxide LPG sensors. Graphical abstract Schematic of a room temperature gas sensor for liquefied petroleum gas (LPG). It is based on the use of a few-layered graphene (1 wt%)/SnO2 nanocomposite that was deposited on an interdigitated electrode (IDEs). A sensing mechanism for LPG detection has been established.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links