Displaying all 20 publications

Abstract:
Sort:
  1. Jeffery Daim LD, Ooi TE, Ithnin N, Mohd Yusof H, Kulaveerasingam H, Abdul Majid N, et al.
    Electrophoresis, 2015 Aug;36(15):1699-710.
    PMID: 25930948 DOI: 10.1002/elps.201400608
    The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.
  2. Ong AL, Teh CK, Mayes S, Massawe F, Appleton DR, Kulaveerasingam H
    Plants (Basel), 2020 Nov 03;9(11).
    PMID: 33152992 DOI: 10.3390/plants9111476
    Oil palm (Elaeis guineensis Jacq.) is the most traded crop among the economically important palm species. Here, we report an extended version genome of E. guineensis that is 1.2 Gb in length, an improvement of the physical genome coverage to 79% from the previous 43%. The improvement was made by assigning an additional 1968 originally unplaced scaffolds that were available publicly into the physical genome. By integrating three ultra-dense linkage maps and using them to place genomic scaffolds, the 16 pseudomolecules were extended. As we show, the improved genome has enhanced the mapping resolution for genome-wide association studies (GWAS) and permitted further identification of candidate genes/protein-coding regions (CDSs) and any non-coding RNA that may be associated with them for further studies. We then employed the new physical map in a comparative genomics study against two other agriculturally and economically important palm species-date palm (Phoenix dactylifera L.) and coconut palm (Cocos nucifera L.)-confirming the high level of conserved synteny among these palm species. We also used the improved oil palm genome assembly version as a palm genome reference to extend the date palm physical map. The improved genome of oil palm will enable molecular breeding approaches to expedite crop improvement, especially in the largest subfamily of Arecoideae, which consists of 107 species belonging to Arecaceae.
  3. Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL
    Plant Cell Environ, 2019 05;42(5):1657-1673.
    PMID: 30549047 DOI: 10.1111/pce.13503
    Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
  4. Yeap WC, Ooi TE, Namasivayam P, Kulaveerasingam H, Ho CL
    Plant Cell Rep, 2012 Oct;31(10):1829-43.
    PMID: 22699852 DOI: 10.1007/s00299-012-1297-x
    RNA-binding proteins (RBPs) have been implicated as regulatory proteins involved in the post-transcriptional processes of gene expression in plants under various stress conditions. In this study, we report the cloning and characterization of a gene, designated as EgRBP42, encoding a member of the plant heterogeneous nuclear ribonucleoprotein (hnRNP)-like RBP family from oil palm (Elaeis guineensis Jacq.). EgRBP42 consists of two N-terminal RNA recognition motifs and a glycine-rich domain at the C-terminus. The upstream region of EgRBP42 has multiple light-responsive, stress-responsive regulatory elements and regulatory elements associated with flower development. Real-time RT-PCR analysis of EgRBP42 showed that EgRBP42 was expressed in oil palm tissues tested, including leaf, shoot apical meristem, root, female inflorescence, male inflorescence and mesocarp with the lowest transcript level in the roots. EgRBP42 protein interacted with transcripts associated with transcription, translation and stress responses using pull-down assay and electrophoretic mobility shift assay. The accumulation of EgRBP42 and its interacting transcripts were induced by abiotic stresses, including salinity, drought, submergence, cold and heat stresses in leaf discs. Collectively, the data suggested that EgRBP42 is a RBP, which responds to various abiotic stresses and could be advantageous for oil palm under stress conditions. Key message EgRBP42 may be involved in the post-transcriptional regulation of stress-related genes important for plant stress response and adaptation.
  5. Kwong QB, Wong YC, Lee PL, Sahaini MS, Kon YT, Kulaveerasingam H, et al.
    Sci Rep, 2021 07 26;11(1):15210.
    PMID: 34312480 DOI: 10.1038/s41598-021-94705-4
    Stomatal density is an important trait for breeding selection of drought tolerant oil palms; however, its measurement is extremely tedious. To accelerate this process, we developed an automated system. Leaf samples from 128 palms ranging from nursery (1 years old), juvenile (2-3 years old) and mature (> 10 years old) were collected to build an oil palm specific stomata detection model. Micrographs were split into tiles, then used to train a stomata object detection convolutional neural network model through transfer learning. The detection model was then tested on leaf samples acquired from three independent oil palm populations of young seedlings (A), juveniles (B) and productive adults (C). The detection accuracy, measured in precision and recall, was 98.00% and 99.50% for set A, 99.70% and 97.65% for set B, and 99.55% and 99.62% for set C, respectively. The detection model was cross-applied to another set of adult palms using stomata images taken with a different microscope and under different conditions (D), resulting in precision and recall accuracy of 99.72% and 96.88%, respectively. This indicates that the model built generalized well, in addition has high transferability. With the completion of this detection model, stomatal density measurement can be accelerated. This in turn will accelerate the breeding selection for drought tolerance.
  6. Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR, Kulaveerasingam H
    Plant J, 2017 Jul;91(1):97-113.
    PMID: 28370622 DOI: 10.1111/tpj.13549
    The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis.
  7. Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H
    Plant Physiol, 2015 Sep;169(1):391-402.
    PMID: 26152712 DOI: 10.1104/pp.15.00943
    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process.
  8. Ooi TE, Yeap WC, Daim LD, Ng BZ, Lee FC, Othman AM, et al.
    Proteome Sci, 2015;13:28.
    PMID: 26617468 DOI: 10.1186/s12953-015-0085-2
    BACKGROUND: The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues). Hence, there is attention given to gain insights into the processes of oil deposition in this oil rich tissue. For that purpose, two-dimensional differential gel electrophoresis (DIGE) coupled with western assays, were used here to analyze differential protein levels in genetically-related high-and low-yielding oil palm mesocarps.

    RESULTS: From the DIGE comparative analysis in combination with western analysis, 41 unique differentially accumulated proteins were discovered. Functional categorization of these proteins placed them in the metabolisms of lipid, carbohydrate, amino acids, energy, structural proteins, as well as in other functions. In particular, higher abundance of fructose-1,6-biphosphate aldolase combined with reduced level of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase may be indicative of important flux balance changes in glycolysis, while amino acid metabolism also appeared to be closely linked with oil yield.

    CONCLUSIONS: Forty-one proteins in several important biological pathways were identified as exhibiting differential in abundance at critical oil production stages. These confirm that oil yield is a complex trait involving the regulation of genes in multiple biological pathways. The results also provide insights into key control points of lipid biosynthesis in oil palm and can assist in the development of genetic markers for use in oil palm breeding programmes.

  9. Teh CK, Ong AL, Kwong QB, Apparow S, Chew FT, Mayes S, et al.
    Sci Rep, 2016;6:19075.
    PMID: 26743827 DOI: 10.1038/srep19075
    GWAS in out-crossing perennial crops is typically limited by insufficient marker density to account for population diversity and effects of population structure resulting in high false positive rates. The perennial crop oil palm is the most productive oil crop. We performed GWAS for oil-to-dry-mesocarp content (O/DM) on 2,045 genotyped tenera palms using 200K SNPs that were selected based on the short-range linkage disequilibrium distance, which is inherent with long breeding cycles and heterogeneous breeding populations. Eighty loci were significantly associated with O/DM (p ≤ 10(-4)) and three key signals were found. We then evaluated the progeny of a Deli x AVROS breeding trial and a 4% higher O/DM was observed amongst those having the beneficial genotypes at two of the three key loci (p < 0.05). We have initiated MAS and large-scale planting of elite dura and pisifera parents to generate the new commercial tenera palms with higher O/DM potential.
  10. Teh CK, Muaz SD, Tangaya P, Fong PY, Ong AL, Mayes S, et al.
    Sci Rep, 2017 06 08;7(1):3118.
    PMID: 28596562 DOI: 10.1038/s41598-017-03225-7
    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.
  11. Kwong QB, Ong AL, Teh CK, Chew FT, Tammi M, Mayes S, et al.
    Sci Rep, 2017 06 06;7(1):2872.
    PMID: 28588233 DOI: 10.1038/s41598-017-02602-6
    Genomic selection (GS) uses genome-wide markers to select individuals with the desired overall combination of breeding traits. A total of 1,218 individuals from a commercial population of Ulu Remis x AVROS (UR x AVROS) were genotyped using the OP200K array. The traits of interest included: shell-to-fruit ratio (S/F, %), mesocarp-to-fruit ratio (M/F, %), kernel-to-fruit ratio (K/F, %), fruit per bunch (F/B, %), oil per bunch (O/B, %) and oil per palm (O/P, kg/palm/year). Genomic heritabilities of these traits were estimated to be in the range of 0.40 to 0.80. GS methods assessed were RR-BLUP, Bayes A (BA), Cπ (BC), Lasso (BL) and Ridge Regression (BRR). All methods resulted in almost equal prediction accuracy. The accuracy achieved ranged from 0.40 to 0.70, correlating with the heritability of traits. By selecting the most important markers, RR-BLUP B has the potential to outperform other methods. The marker density for certain traits can be further reduced based on the linkage disequilibrium (LD). Together with in silico breeding, GS is now being used in oil palm breeding programs to hasten parental palm selection.
  12. Kwong QB, Teh CK, Ong AL, Chew FT, Mayes S, Kulaveerasingam H, et al.
    BMC Genet, 2017 Dec 11;18(1):107.
    PMID: 29228905 DOI: 10.1186/s12863-017-0576-5
    BACKGROUND: Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits.

    RESULTS: The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods.

    CONCLUSION: Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation.

  13. Ruzlan N, Low YSJ, Win W, Azizah Musa N, Ong AL, Chew FT, et al.
    Sci Rep, 2017 Aug 29;7(1):9626.
    PMID: 28852058 DOI: 10.1038/s41598-017-10195-3
    The fructose-1,6-bisphosphate aldolase catalyzed glycolysis branch that forms dihydroxyacetone phosphate and glyceraldehyde-3-phosphate was identified as a key driver of increased oil synthesis in oil palm and was validated in Saccharomyces cerevisiae. Reduction in triose phosphate isomerase (TPI) activity in a yeast knockdown mutant resulted in 19% increase in lipid content, while yeast strains overexpressing oil palm fructose-1,6-bisphosphate aldolase (EgFBA) and glycerol-3-phosphate dehydrogenase (EgG3PDH) showed increased lipid content by 16% and 21%, respectively. Genetic association analysis on oil palm SNPs of EgTPI SD_SNP_000035801 and EgGAPDH SD_SNP_000041011 showed that palms harboring homozygous GG in EgTPI and heterozygous AG in EgGAPDH exhibited higher mesocarp oil content based on dry weight. In addition, AG genotype of the SNP of EgG3PDH SD_SNP_000008411 was associated with higher mean mesocarp oil content, whereas GG genotype of the EgFBA SNP SD_SNP_000007765 was favourable. Additive effects were observed with a combination of favourable alleles in TPI and FBA in Nigerian x AVROS population (family F7) with highest allele frequency GG.GG being associated with a mean increase of 3.77% (p value = 2.3E-16) oil content over the Family 1. An analogous effect was observed in yeast, where overexpressed EgFBA in TPI - resulted in a 30% oil increment. These results provide insights into flux balances in glycolysis leading to higher yield in mesocarp oil-producing fruit.
  14. Teh HF, Neoh BK, Wong YC, Kwong QB, Ooi TE, Ng TL, et al.
    J Agric Food Chem, 2014 Aug 13;62(32):8143-52.
    PMID: 25032485 DOI: 10.1021/jf500975h
    Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA₄ but opposite to the GA₃ profile such that as ABA levels increase the resulting elevated ABA/GA₃ ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles.
  15. Neoh BK, Teh HF, Ng TL, Tiong SH, Thang YM, Ersad MA, et al.
    J Agric Food Chem, 2013 Feb 27;61(8):1920-7.
    PMID: 23384169 DOI: 10.1021/jf304561f
    Oil palm is one of the most productive oil producing crops and can store up to 90% oil in its fruit mesocarp. However, the biosynthetic regulation and drivers of palm mesocarp development are still not well understood. Multiplatform metabolomics technology was used to profile palm metabolites during six critical stages of fruit development in order to better understand lipid biosynthesis. Significantly higher amino acid levels were observed in palm mesocarp preceding lipid biosynthesis. Nucleosides were found to be in high concentration during lipid biosynthesis, whereas levels of metabolites involved in the tricarboxylic acid cycle were more concentrated during early fruit development. Apart from insights into the regulation of metabolites during fruit development in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programs.
  16. Kwong QB, Teh CK, Ong AL, Heng HY, Lee HL, Mohamed M, et al.
    Mol Plant, 2016 Aug 01;9(8):1132-1141.
    PMID: 27112659 DOI: 10.1016/j.molp.2016.04.010
    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle.
  17. Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, et al.
    BMC Genomics, 2017 06 21;18(1):470.
    PMID: 28637447 DOI: 10.1186/s12864-017-3855-7
    BACKGROUND: The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations.

    RESULTS: A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms.

    CONCLUSIONS: Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to production of high-yielding oil palms and have implications for breeding to maximize oil production.

  18. Teh HF, Neoh BK, Hong MP, Low JY, Ng TL, Ithnin N, et al.
    PLoS One, 2013;8(4):e61344.
    PMID: 23593468 DOI: 10.1371/journal.pone.0061344
    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
  19. Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, et al.
    BMC Genomics, 2007;8:381.
    PMID: 17953740
    Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm.
  20. Neoh BK, Wong YC, Teh HF, Ng TLM, Tiong SH, Ooi TEK, et al.
    PLoS One, 2019;14(3):e0213591.
    PMID: 30856213 DOI: 10.1371/journal.pone.0213591
    To investigate limiters of photosynthate assimilation in the carbon-source limited crop, oil palm (Elaeis guineensis Jacq.), we measured differential metabolite, gene expression and the gas exchange in leaves in an open field for palms with distinct mesocarp oil content. We observed higher concentrations of glucose 1-phosphate, glucose 6-phosphate, sucrose 6-phosphate, and sucrose in high-oil content palms with the greatest difference being at 11:00 (p-value ≤0.05) immediately after the period of low morning light intensity. Three important photosynthetic genes were identified using differentially expressed gene analysis (DEGs) and were found to be significantly enriched through Gene Ontology (GO) and pathway enrichment: chlorophyll a-b binding protein (CAB-13), photosystem I (PSI), and Ferredoxin-NADP reductase (FNR), particularly for sampling points at non-peak light (11:00 and 19:00), ranging from 3.3-fold (PSI) and 5.6-fold (FNR) to 10.3-fold (CAB-13). Subsequent gas exchange measurements further supported increased carbon assimilation through higher level of internal CO2 concentration (Ci), stomatal conductance (gs) and transpiration rate (E) in high-oil content palms. The selection for higher expression of key photosynthesis genes together with CO2 assimilation under low light is likely to be important for crop improvement, in particular at full maturity and under high density planting regimes where light competition exists between palms.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links