Tuberculosis (TB), derived from bacterium named Mycobacterium tuberculosis, has become one of the worst infectious and contagious illnesses in the world after HIV/AIDS. Long-term therapy, a high pill burden, lack of compliance, and strict management regimens are disadvantages which resulted in the extensively drug-resistant (XDR) along with multidrug-resistant (MDR) in the treatment of TB. One of the main thrust areas for the current scenario is the development of innovative intervention tools for early diagnosis and therapeutics towards Mycobacterium tuberculosis (MTB). This review discusses various nanotherapeutic agents that have been developed for MTB diagnostics, anti-TB drugs and vaccine. Undoubtedly, the concept of employing nanoparticles (NPs) has strong potential in this therapy and offers impressive outcomes to conquer the disease. Nanocarriers with different types were designed for drug delivery applications via various administration methods. Controlling and maintaining the drug release might be an example of the benefits of utilizing a drug-loaded NP in TB therapy over conventional drug therapy. Furthermore, the drug-encapsulated NP is able to lessen dosage regimen and can resolve the problems of insufficient compliance. Over the past decade, NPs were developed in both diagnostic and therapeutic methods, while on the other hand, the therapeutic system has increased. These "theranostic" NPs were designed for nuclear imaging, optical imaging, ultrasound, imaging with magnetic resonance and the computed tomography, which includes both single-photon computed tomography and positron emission tomography. More specifically, the current manuscript focuses on the status of therapeutic and diagnostic approaches in the treatment of TB.
Cellulose and chitosan with remarkable biocompatibility and sophisticated physiochemical characteristics can be a new dawn to the advanced drug nano-carriers in cancer treatment. This study aims to synthesize layer-by-layer bionanocomposites from chitosan and rice straw cellulose encapsulated 5-Fluorouracil (CS-CF/5FU BNCs) using the ionic gelation method and the sodium tripolyphosphate (TPP) cross-linker. Data from X-ray and Fourier-transform infrared spectroscopy showed successful preparation of CS-CF/5FU BNCs. Based on images of scanning electron microscopy, 48.73 ± 1.52 nm was estimated for an average size of the bionanocomposites as spherical chitosan nanoparticles mostly coated rod-shaped cellulose reinforcement. 5-Fluorouracil indicated an increase in thermal stability after its encapsulation in the bionanocomposites. The drug encapsulation efficiency was found to be 86 ± 2.75%. CS-CF/5FU BNCs triggered higher drug release in a media simulating the colorectal fluid with pH 7.4 (76.82 ± 1.29%) than the gastric fluid with pH 1.2 (42.37 ± 0.43%). In in vitro cytotoxicity assays, cellulose fibers, chitosan nanoparticles and the bionanocomposites indicated biocompatibility towards CCD112 normal cells. Most promisingly, CS-CF/5FU BNCs at 250 µg/mL concentration eliminated 56.42 ± 0.41% of HCT116 cancer cells and only 8.16 ± 2.11% of CCD112 normal cells. Therefore, this study demonstrates that CS-CF/5FU BNCs can be considered as an eco-friendly and innovative nanodrug candidate for potential colorectal cancer treatment.
Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.