Displaying all 5 publications

Abstract:
Sort:
  1. Kim K, Cho E, Thokchom B, Cui M, Jang M, Khim J
    Ultrason Sonochem, 2015 May;24:172-7.
    PMID: 25432401 DOI: 10.1016/j.ultsonch.2014.11.004
    The effects of ultrasonic conditions and physicochemical properties on the synergistic degradation in synthetic solution were investigated. A wide range of ultrasound frequencies, including 35, 170, 300, 500 and 700 kHz, and ultrasonic power densities, including 11.3, 22.5 and 31.5 W/L were used. It was revealed that the physical effect of ultrasound plays a major role in synergistic mechanism and 35 kHz was found to be the most effective frequency due to its more vigorous physical effect induced by high implosive energy released from collapse of cavitation bubbles. The highest ultrasonic power density (31.5 W/L) showed the highest synergy index as it increases the number of cavitation bubbles and the energy released when they collapse. The synergy indexes of various substituted phenols under identical condition were investigated. These results were correlated with physicochemical properties, namely octanol-water partition coefficient (Log K OW), water solubility (SW), Henry's law constant (KH) and water diffusivity (DW). Among these parameters, Log K OW and DW were found to have substantial effects on synergy indexes.
  2. Kim E, Cui M, Jang M, Park B, Son Y, Khim J
    Ultrason Sonochem, 2014 Jul;21(4):1504-11.
    PMID: 24508490 DOI: 10.1016/j.ultsonch.2014.01.003
    In this study, the effect of the dimensions of the bottom plate and liquid height was investigated for high-frequency sonoreactors under a vertically irradiated system. The dimensions of the bottom plate did not significantly influence sonochemical activity considering power density. However, as the bottom plate was increased in size, the hydroxyl radical generation rate decreased because of a decrease in power density. It is therefore recommended that sonoreactors with bottom-plate dimensions close to those of the ultrasonic transducer module be used. Liquid height had a significant effect on sonochemical activity, but the trend of the activity considering power density changed as the initial pollutant concentration changed. In the case of low initial concentration of As(III) (1 mg/L), the maximum cavitation yield for As(III) oxidation was observed at liquid heights of 150 mm.
  3. Cui M, Jang M, Ibrahim S, Park B, Cho E, Khim J
    Ultrason Sonochem, 2014 Jul;21(4):1527-34.
    PMID: 24500068 DOI: 10.1016/j.ultsonch.2014.01.001
    Batch and continuous-flow pilot tests using ultrasound (US), ultraviolet (UV) and a combination of US and UV were conducted to determine the oxidation rates of arsenite [As(III)]. Compared to the single processes of US or UV, the combined US/UV system was more effective for As(III) oxidation with a synergy index of more than 1.5. A high rate constant of As(III) removal was obtained as ferrous [Fe(II)] ions existed. Like the pseudo-Fenton reaction, Fe(II) species can participate in the production of additional ·OH by reacting with H2O2 produced by US, before being oxidized to Fe(III). From the results of batch tests, the optimum molar ratio of Fe(II)/As(III) and pH were found to be 83 and 6-9.5, respectively. Similarly, the continuous-flow pilot tests showed that US/UV system could remove As(III) below the regulation [10 μg L(-1) as total As (Astot)] at 91 of molar ratio [Fe(II)/As(III)] and 3-h HRT. The continuous-stirred-tank-reactor (CSTR) modeling showed that the scavenging effect of anionic species (Cl(-) and CO3(2-)) for ·OH might prevail in the single processes, whereas it is insignificant in the combined process. Without using chemicals, microfiltration (MF) was adopted to treat sludge produced in oxidation step. In terms of an engineering aspect, the operational critical flux (CF) and cycle time were also optimized through the continuous-flow tests of MF system. As an energy-utilizing oxidation technique that does not require a catalyst, the combined energy system employing US/UV followed by MF could be a promising alternative for treating As(III) and Fe(II) simultaneously.
  4. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J
    Chemosphere, 2016 Feb;144:2081-90.
    PMID: 26583290 DOI: 10.1016/j.chemosphere.2015.10.107
    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits.
  5. Kittappa S, Cui M, Ramalingam M, Ibrahim S, Khim J, Yoon Y, et al.
    PLoS One, 2015;10(7):e0130253.
    PMID: 26161510 DOI: 10.1371/journal.pone.0130253
    Mesoporous silica materials (MSMs) were synthesized economically using silica (SiO2) as a precursor via a modified alkaline fusion method. The MSM prepared at 500°C (MSM-500) had the highest surface area, pore size, and volume, and the results of isotherms and the kinetics of ibuprofen (IBP) removal indicated that MSM-500 had the highest sorption capacity and fastest removal speed vs. SBA-15 and zeolite. Compared with commercial granular activated carbon (GAC), MSM-500 had a ~100 times higher sorption rate at neutral pH. IBP uptake by MSM-500 was thermodynamically favorable at room temperature, which was interpreted as indicating relatively weak bonding because the entropy (∆adsS, -0.07 J mol(-1) K(-1)) was much smaller. Five times recycling tests revealed that MSM-500 had 83-87% recovery efficiencies and slower uptake speeds due to slight deformation of the outer pore structure. In the IBP delivery test, MSM-500 drug loading was 41%, higher than the reported value of SBA-15 (31%). The in vitro release of IBP was faster, almost 100%, reaching equilibrium within a few hours, indicating its effective loading and unloading characteristics. A cost analysis study revealed that the MSM was ~10-70 times cheaper than any other mesoporous silica material for the removal or delivery of IBP.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links