Displaying all 4 publications

Abstract:
Sort:
  1. Chia PL, Earnest A, Lee R, Lim J, Wong CP, Chia YW, et al.
    Ann Acad Med Singap, 2013 Sep;42(9):432-6.
    PMID: 24162317
    INTRODUCTION: In Singapore, the age-standardised event rates of myocardial infarction (MI) are 2- and 3-fold higher for Malays and Indians respectively compared to the Chinese. The objectives of this study were to determine the prevalence and quantity of coronary artery calcification (CAC) and non-calcified plaques across these 3 ethnic groups.

    MATERIALS AND METHODS: This was a retrospective descriptive study. We identified 1041 patients (810 Chinese, 139 Malays, 92 Indians) without previous history of cardiovascular disease who underwent cardiac computed tomography for atypical chest pain evaluation. A cardiologist, who was blinded to the patients' clinical demographics, reviewed all scans. We retrospectively analysed all their case records.

    RESULTS: Overall, Malays were most likely to be active smokers (P = 0.02), Indians had the highest prevalence of diabetes mellitus (P = 0.01) and Chinese had the highest mean age (P <0.0001). The overall prevalence of patients with non-calcified plaques as the only manifestation of sub-clinical coronary artery disease was 2.1%. There was no significant difference in the prevalence of CAC, mean CAC score or prevalence of non-calcified plaques among the 3 ethnic groups. Active smoking, age and hypertension were independent predictors of CAC. Non-calcified plaques were positively associated with male gender, age, dyslipidaemia and diabetes mellitus.

    CONCLUSION: The higher MI rates in Malays and Indians in Singapore cannot be explained by any difference in CAC or non-calcified plaque. More research with prospective follow-up of larger patient populations is necessary to establish if ethnic-specific calibration of CAC measures is needed to adjust for differences among ethnic groups.

  2. de Souza AC, Sebastian IA, Zaidi WAW, Nasreldein A, Bazadona D, Amaya P, et al.
    Int J Stroke, 2022 10;17(9):990-996.
    PMID: 35137645 DOI: 10.1177/17474930221082446
    BACKGROUND: Major disparities have been reported in recombinant tissue plasminogen activator (rtPA) availability among countries of different socioeconomic status.

    AIMS: To characterize variability of rtPA price, its availability, and its association with and impact on each country's health expenditure (HE) resources.

    METHODS: We conducted a global survey to obtain information on rtPA price (50 mg vial, 2020 US Dollars) and availability. Country-specific data, including low, lower middle (LMIC), upper middle (UMIC), and high-income country (HIC) classifications, and gross domestic product (GDP) and HE, both nominally and adjusted for purchasing power parity (PPP), were obtained from World Bank Open Data. To assess the impact of rtPA cost, we computed the rtPA price as percentage of per capita GDP and HE and examined its association with the country income classification.

    RESULTS: rtPA is approved and available in 109 countries. We received surveys from 59 countries: 27 (46%) HIC, 20 (34%) UMIC, and 12 (20%) LMIC. Although HIC have significantly higher per capita GDP and HE compared to UMIC and LMIC (p < 0.0001), the median price of rtPA is non-significantly higher in LMICs (USD 755, interquartile range, IQR (575-1300)) compared to UMICs (USD 544, IQR (400-815)) and HICs (USD 600, IQR (526-1000)). In LMIC, rtPA cost accounts for 217.4% (IQR, 27.1-340.6%) of PPP-adjusted per capita HE, compared to 17.6% (IQR (11.2-28.7%), p < 0.0001) for HICs.

    CONCLUSION: We documented significant variability in rtPA availability and price among countries. Relative costs are higher in lower income countries, exceeding the available HE. Concerted efforts to improve rtPA affordability in low-income settings are necessary.

  3. Lindgren AG, Braun RG, Juhl Majersik J, Clatworthy P, Mainali S, Derdeyn CP, et al.
    Int J Stroke, 2021 Apr 26.
    PMID: 33739214 DOI: 10.1177/17474930211007288
    Numerous biological mechanisms contribute to outcome after stroke, including brain injury, inflammation, and repair mechanisms. Clinical genetic studies have the potential to discover biological mechanisms affecting stroke recovery in humans and identify intervention targets. Large sample sizes are needed to detect commonly occurring genetic variations related to stroke brain injury and recovery. However, this usually requires combining data from multiple studies where consistent terminology, methodology, and data collection timelines are essential. Our group of expert stroke and rehabilitation clinicians and researchers with knowledge in genetics of stroke recovery here present recommendations for harmonizing phenotype data with focus on measures suitable for multicenter genetic studies of ischemic stroke brain injury and recovery. Our recommendations have been endorsed by the International Stroke Genetics Consortium.
  4. Ouyang M, Faigle R, Wang X, Johnson B, Summers D, Khatri P, et al.
    Cerebrovasc Dis, 2023 Oct 26.
    PMID: 37883934 DOI: 10.1159/000534706
    Introduction Careful monitoring of patients who receive intravenous thrombolysis (IVT) for acute ischemic stroke (AIS) is resource-intensive, and potentially less relevant in those with mild degrees of neurological impairment who are at low-risk of symptomatic intracerebral hemorrhage (sICH) and other complications. \ Methods OPTIMISTmain is an international, multicenter, prospective, stepped wedge, cluster randomized, blinded outcome assessed trial aims to determine whether a less-intensity monitoring protocol is at least as effective, safe and efficient as standard post-IVT monitoring in patients with mild deficits post-AIS. Clinically-stable adult patients with mild AIS (defined by a NIHSS <10) who do not require intensive care within 2 hours post-IVT are recruited at hospitals in Australia, Chile, China, Malaysia, Mexico, UK, US and Vietnam. An average of 15 patients recruited per period (overall 60 patient participants) at 120 sites for a total of 7200 IVT-treated AIS patients will provide 90% power (one-sided α 0.025). The initiation of eligible hospitals is based on a rolling process whenever ready, stratified by country. Hospitals are randomly allocated using permuted blocks into 3 sequences of implementation, stratified by country and the projected number of patients to be recruited over 12 months. These sequences have four periods that dictate the order in which they are to switch from control (usual care) to intervention (implementation of low intensity monitoring protocol) to different clusters of patients in a stepped manner. Compared to standard monitoring, the low-intensity monitoring protocol includes assessments of neurological and vital signs every 15 minutes for 2 hours, 2 hourly (versus every 30 minutes) for 8 hours, and 4 hourly (versus every 1 hour) until 24 hours, post-IVT. The primary outcome measure is functional recovery, defined by the modified Rankin scale (mRS) at 90 days, a seven-point ordinal scale (0 [no residual symptom] to 6 [death]). Secondary outcomes include death or dependency, length of hospital stay, and health-related quality of life, sICH and serious adverse events. Conclusion OPTIMISTmain will provide Level I evidence for the safety and effectiveness of a low-intensity post-IVT monitoring protocol in patients with mild severity of AIS.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links