Recently, green computing has received significant attention for Internet of Things (IoT) environments due to the growing computing demands under tiny sensor enabled smart services. The related literature on green computing majorly focuses on a cover set approach that works efficiently for target coverage, but it is not applicable in case of area coverage. In this paper, we present a new variant of a cover set approach called a grouping and sponsoring aware IoT framework (GS-IoT) that is suitable for area coverage. We achieve non-overlapping coverage for an entire sensing region employing sectorial sensing. Non-overlapping coverage not only guarantees a sufficiently good coverage in case of large number of sensors deployed randomly, but also maximizes the life span of the whole network with appropriate scheduling of sensors. A deployment model for distribution of sensors is developed to ensure a minimum threshold density of sensors in the sensing region. In particular, a fast converging grouping (FCG) algorithm is developed to group sensors in order to ensure minimal overlapping. A sponsoring aware sectorial coverage (SSC) algorithm is developed to set off redundant sensors and to balance the overall network energy consumption. GS-IoT framework effectively combines both the algorithms for smart services. The simulation experimental results attest to the benefit of the proposed framework as compared to the state-of-the-art techniques in terms of various metrics for smart IoT environments including rate of overlapping, response time, coverage, active sensors, and life span of the overall network.
Postquantum cryptography for elevating security against attacks by quantum computers in the Internet of Everything (IoE) is still in its infancy. Most postquantum based cryptosystems have longer keys and signature sizes and require more computations that span several orders of magnitude in energy consumption and computation time, hence the sizes of the keys and signature are considered as another aspect of security by green design. To address these issues, the security solutions should migrate to the advanced and potent methods for protection against quantum attacks and offer energy efficient and faster cryptocomputations. In this context, a novel security framework Lightweight Postquantum ID-based Signature (LPQS) for secure communication in the IoE environment is presented. The proposed LPQS framework incorporates a supersingular isogeny curve to present a digital signature with small key sizes which is quantum-resistant. To reduce the size of the keys, compressed curves are used and the validation of the signature depends on the commutative property of the curves. The unforgeability of LPQS under an adaptively chosen message attack is proved. Security analysis and the experimental validation of LPQS are performed under a realistic software simulation environment to assess its lightweight performance considering embedded nodes. It is evident that the size of keys and the signature of LPQS is smaller than that of existing signature-based postquantum security techniques for IoE. It is robust in the postquantum environment and efficient in terms of energy and computations.
In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.