Displaying all 2 publications

Abstract:
Sort:
  1. Wang S, Khan SA, Munir M, Alhajj R, Khan YA
    PLoS One, 2022;17(12):e0278236.
    PMID: 36548250 DOI: 10.1371/journal.pone.0278236
    Entropy is an alternative measure to calculate the risk, simplify the portfolios and equity risk premium. It has higher explanatory power than capital asset price model (CAPM) beta. The comparison of Entropy and CAPM beta provide in depth analysis about the explanatory power of the model that in turn help investor to make right investment decisions that minimizes risk. In this context, this study aims to compare Shannon and Rennyi Entropies with the CAPM beta for measuring the risk. Ordinary Least square approach has been utilized using a dataset of 67 enterprises registered in Pakistan Stock exchange. The comparative analysis of CAPM beta and entropy has been carried out with the R2 parameters. The result indicates that entropy has more explanatory power as compare to CAPM beta's explanatory power, and this turns out to be the best option to evaluate the risk performances. The result implies that an investor should make the best investment decision by choosing an enterprise that provide with good returns at minimum risk based on entropy technique.
  2. Lai H, Khan YA, Thaljaoui A, Chammam W, Abbas SZ
    Soft comput, 2021 May 19.
    PMID: 34025212 DOI: 10.1007/s00500-021-05871-6
    Unemployment remains a serious issue for both developed and developing countries and a driving force to lose their monetary and financial impact. The estimation of the unemployment rate has drawn researchers' attention in recent years. This investigation's key objective is to inquire about the impact of COVID-19 on the unemployment rate in selected, developed and developing countries of Asia. For experts and policymakers, effective prediction of the unemployment rate is an influential test that assumes an important role in planning the monetary and financial development of a country. Numerous researchers have recently utilized conventional analysis tools for unemployment rate prediction. Notably, unemployment data sets are nonstationary. Therefore, modeling these time series by conventional methods can produce an arbitrary mistake. To overcome the accuracy problem associated with conventional approaches, this investigation assumes intelligent-based prediction approaches to deal with the unemployment data and to predict the unemployment rate for the upcoming years more precisely. These intelligent-based unemployment rate strategies will force their implications by repeating diversity in the unemployment rate. For illustration purposes, unemployment data sets of five advanced and five developing countries of Asia, essentially Japan, South Korea, Malaysia, Singapore, Hong Kong, and five agricultural countries (i.e., Pakistan, China, India, Bangladesh and Indonesia) are selected. The hybrid ARIMA-ARNN model performed well among all hybrid models for advanced countries of Asia, while the hybrid ARIMA-ANN outperformed for developing countries aside from China, and hybrid ARIMA-SVM performed well for China. Furthermore, for future unemployment rate prediction, these selected models are utilized. The result displays that in developing countries of Asia, the unemployment rate will be three times higher as compared to advanced countries in the coming years, and it will take double the time to address the impacts of Coronavirus in developing countries than in developed countries of Asia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links