Displaying publications 1 - 20 of 126 in total

Abstract:
Sort:
  1. Cher Pin, S., Rashmi, W., Khalid, M., Chong, C.H., Woo, M.W., Tee, L.H.
    MyJurnal
    The drying of Piper betle Linn (betel) leaf extract using a lab scale spray dryer was simulated using Computational Fluid Dynamics (CFD). Three different turbulent models (standard k-ε, RNG k-ε and realizable k-ε) were used in the present study to determine the most suitable model for predicting the flow profile. Parametric studies were also conducted to evaluate the effect of process variables on the final moisture content. Four different initial droplet sizes (36, 79, 123 and 166 μm) were tested with four sets of combination of hot air temperature (140 and 160°C) and feed rate (4, 9.5 and 15 ml/min). It was found that standard k-ε is the most suitable turbulent model to predict the flow behaviour Moreover, the lowest final moisture content present in samples was obtained at 140°C and a feed rate of 15.0 ml/min.
  2. Mahrous SA, Sidik NAC, Saqr KM
    PLoS One, 2021;16(1):e0245775.
    PMID: 33493237 DOI: 10.1371/journal.pone.0245775
    The complex physics and biology underlying intracranial hemodynamics are yet to be fully revealed. A fully resolved direct numerical simulation (DNS) study has been performed to identify the intrinsic flow dynamics in an idealized carotid bifurcation model. To shed the light on the significance of considering blood shear-thinning properties, the power-law model is compared to the commonly used Newtonian viscosity hypothesis. We scrutinize the kinetic energy cascade (KEC) rates in the Fourier domain and the vortex structure of both fluid models and examine the impact of the power-law viscosity model. The flow intrinsically contains coherent structures which has frequencies corresponding to the boundary frequency, which could be associated with the regulation of endothelial cells. From the proposed comparative study, it is found that KEC rates and the vortex-identification are significantly influenced by the shear-thinning blood properties. Conclusively, from the obtained results, it is found that neglecting the non-Newtonian behavior could lead to underestimation of the hemodynamic parameters at low Reynolds number and overestimation of the hemodynamic parameters by increasing the Reynolds number. In addition, we provide physical insight and discussion onto the hemodynamics associated with endothelial dysfunction which plays significant role in the pathogenesis of intracranial aneurysms.
  3. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N
    Int J Mol Sci, 2012;13(3):3291-3340.
    PMID: 22489153 DOI: 10.3390/ijms13033291
    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1-3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed.
  4. Abdelkader E. Ashour, Anwar A. Almuslim, Sheikh F. Ahmad, Sabry M. Attia, Rehan Ahmed, Ashok Kumar, et al.
    IIUM Medical Journal Malaysia, 2019;18(102):44-0.
    MyJurnal
    Colorectal cancer (CRC) constitutes one of the most aggressive malignancies worldwide and in Malaysia. Due to high recurrence rate and toxic side effects associated with radiation and chemotherapies, new agents are urgently needed. CARP-1 is a peri-nuclear phospho-protein which plays a dynamic role in regulating cell growth and apoptosis. CARP-1 functional mimetics (CFMs) are a class of compounds that stimulate CARP-1. CFM-4, a lead compound, was shown to suppress growth and metastasis of various cancers, other than CRC. We hypothesized that CFM-4 inhibits proliferation and metastasis in CRC. Materials and method: CFM-4 anti-cancer effects of on CRC cells were investigated using MTT assay, Annexin V/Propidium iodide (PI) apoptosis assay, cell cycle analysis, quantitative real-time PCR (qRT-PCR) and Western blotting. Antimetastatic activities were assessed by migration, colony formation and invasion assays. Results: CFM-4 inhibited CRC cell proliferation and was much more potent than the classical anti-CRC 5-fluorouracil. These effects were shown to be mediated at least in part by stimulating apoptosis, as indicated in our Annexin V/PI assay results. Cell cycle analysis showed that CFM-4 induced G2/M phase arrest. Molecularly, qRT-PCR results revealed that CFM-4 promoted intrinsic apoptosis by upregulating expression of caspase-8 and -9 , p53, PUMA and Noxa, and stimulated extrinsic apoptosis by enhancing expression of death receptors (DR4 and DR5). CFM-4 upregulated NF- k B signaling inhibitor A20-binding inhibitor protein and the PI3K negative regulator PTEN. Western blot analysis results revealed that CFM-4 enhanced expression of CARP1, caspase-8 and executioner caspase-3. Metastatic properties of the CRC cells were reduced by CFM-4 through blocking their capabilities to form colonies, migrate and invade through the matrix-coated membranes. Conclusion: The potent antitumor and anti-metastatic properties of CFM-4 against CRC are due to collective pro-apoptotic, anti-proliferative and anti-metastatic activities. Together our data warrants further investigations of CFM-4 as potential anti-tumor agent for CRC malignancy and metastasis.
  5. Pillai P, Dharaskar S, Khalid M
    Chemosphere, 2021 Dec;284:131317.
    PMID: 34216929 DOI: 10.1016/j.chemosphere.2021.131317
    The current novel work presents the optimization of factors affecting defluoridation by Al doped ZnO nanoparticles using response surface methodology (RSM). Al doped ZnO nanoparticles were synthesized by the sol-gel method and validated by FTIR, XRD, TEM/EDS, TGA, BET, and particle size analysis. Moreover, a central composite design (CCD) was developed for the experimental study to know the interaction between Al doped ZnO adsorbent dosage, initial concentration of fluoride, and contact time on fluoride removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was achieved to discover the importance of the individual and the effect of variables on the response. The model predicted that the response significantly correlated with the experimental response (R2 = 0.97). Among the factors, the effect of adsorbent dose and contact time was considered to have more influence on the response than the concentration. The optimized process parameters by RSM presented the adsorbent dosage: 0.005 g, initial concentration of fluoride: 1.5 g/L, and contact time: 5 min, respectively. Kinetic, isotherm, and thermodynamic studies were also investigated. The co-existing ions were also studied. These results demonstrated that Al doped ZnO could be a promising adsorbent for effective defluoridation for water.
  6. Pillai P, Lakhtaria Y, Dharaskar S, Khalid M
    Environ Sci Pollut Res Int, 2020 Jun;27(17):20606-20620.
    PMID: 31368069 DOI: 10.1007/s11356-019-05948-8
    A novel nanoparticle (NPs) iron oxyhydroxide modified with rice husk (RH + FeOOH) was synthesized with wet chemical method. Batch study was performed to investigate fluoride removal and adsorption capacity. The RH + FeOOH NPs were characterized by using Fourier transform infrared spectroscopy, X-ray powder diffraction, Brunauer-Emmett-Teller, scanning electron microscope with energy dispersion, transmission electron microscope, and particle size analyzer. By varying parameters, batch adsorption with adsorption capacity was performed such as contact time, stirring rate, adsorbent dosage, temperature, initial concentration, and pH. The BET surface area and the pore volume of the FeOOH and RH + FeOOH were found to be 157 m2 g-1, 195 m2 g-1 and 0.136 m2 g-1, 0.224 m2 g-1. Based on kinetic study, pseudo-second-order was followed by regression coefficient (R2) 0.99. Langmuir isotherm model showed the best adsorption capacity of 26 mg g-1. Moreover, the RH + FeOOH showed best affinity towards fluoride removal and may act as an excellent adsorbent for fluoride treatment from aqueous solution. Synthesis and Fluoride Adsorption Mechanism of Iron Oxyhydroxide Modified with rice husk.
  7. Khan KM, Jamil W, Ambreen N, Taha M, Perveen S, Morales GA
    Ultrason Sonochem, 2014 May;21(3):1200-5.
    PMID: 24398059 DOI: 10.1016/j.ultsonch.2013.12.011
    Aldazines (Bis-Schiff bases) 1-24 were synthesized using aromatic aldehydes (heterocyclic and benzaldehydes) and hydrazine hydrate under reflux using conventional heating and/or via ultrasound irradiation using BiCl3 as catalyst. Ultrasonication conditions with cat. BiCl3 proved to be an effective, environmentally friendly synthetic procedure. This methodology is robust in the presence of electron donating and electron withdrawing groups affording desired products with high yields (>95%) in just a couple of minutes vs. hours using conventional heating.
  8. Aisha AF, Ismail Z, Abu-Salah KM, Siddiqui JM, Ghafar G, Abdul Majid AM
    PMID: 23842450 DOI: 10.1186/1472-6882-13-168
    Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract.
  9. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    PMID: 22818000
    BACKGROUND: Xanthones are a group of oxygen-containing heterocyclic compounds with remarkable pharmacological effects such as anti-cancer, antioxidant, anti-inflammatory, and antimicrobial activities.
    METHODS: A xanthones extract (81% α-mangostin and 16% γ-mangostin), was prepared by crystallization of a toluene extract of G. mangostana fruit rinds and was analyzed by LC-MS. Anti-colon cancer effect was investigated on HCT 116 human colorectal carcinoma cells including cytotoxicity, apoptosis, anti-tumorigenicity, and effect on cell signalling pathways. The in vivo anti-colon cancer activity was also investigated on subcutaneous tumors established in nude mice.
    RESULTS: The extract showed potent cytotoxicity (median inhibitory concentration 6.5 ± 1.0 μg/ml), due to induction of the mitochondrial pathway of apoptosis. Three key steps in tumor metastasis including the cell migration, cell invasion and clonogenicity, were also inhibited. The extract and α-mangostin up-regulate the MAPK/ERK, c-Myc/Max, and p53 cell signalling pathways. The xanthones extract, when fed to nude mice, caused significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal carcinoma cells.
    CONCLUSIONS: Our data suggest new mechanisms of action of α-mangostin and the G. mangostana xanthones, and suggest the xanthones extract of as a potential anti-colon cancer candidate.
  10. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    Molecules, 2012;17(3):2939-54.
    PMID: 22402764 DOI: 10.3390/molecules17032939
    Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.
  11. Aisha AF, Ismail Z, Abu-Salah KM, Majid AM
    J Pharm Sci, 2012 Feb;101(2):815-25.
    PMID: 22081501 DOI: 10.1002/jps.22806
    α-Mangostin is an oxygenated heterocyclic xanthone with remarkable pharmacological properties, but poor aqueous solubility and low oral bioavailability hinder its therapeutic application. This study sought to improve the compound's solubility and study the mechanism underlying solubility enhancement. Solid dispersions of α-mangostin were prepared in polyvinylpyrrolidone (PVP) by solvent evaporation method and showed substantial enhancement of α-mangostin's solubility from 0.2 ± 0.2 μg/mL to 2743 ± 11 μg/mL. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated interaction between α-mangostin and PVP. Transmission electron microscopy and dynamic light scattering showed self-assembly of round anionic nanomicelles with particle size in the range 99-127 nm. Powder X-ray diffraction indicated conversion of α-mangostin from crystalline into amorphous state, and scanning electron microscopy showed the presence of highly porous powder. Studies using the fluorescent probe pyrene showed that the critical micellar concentration is about 77.4 ± 4 μg/mL. Cellular uptake of nanomicelles was found to be mediated via endocytosis and indicated intracellular delivery of α-mangostin associated with potent cytotoxicity (median inhibitory concentration of 8.9 ± 0.2 μg/mL). Improved solubility, self-assembly of nanomicelles, and intracellular delivery through endocytosis may enhance the pharmacological properties of α-mangostin, particularly antitumor efficacy.
  12. Aisha AF, Abu-Salah KM, Alrokayan SA, Ismail Z, Abdulmajid AM
    Pak J Pharm Sci, 2012 Jan;25(1):7-14.
    PMID: 22186303
    Parkia speciosa Hassk is a traditional medicinal plant with strong antioxidant and hypoglycemic properties. This study aims to investigate the total phenolic content, antioxidant, cytotoxic and antiangiogenic effect of eight extracts from P. speciosa empty pods. The extracts were found to contain high levels of total phenols and demonstrated strong antioxidant effect in DPPH scavenging test. In rat aortic rings, P. speciosa extracts significantly inhibited the microvessel outgrowth from aortic tissue explants by more than 50%. The antiangiogenic activity was further confirmed by tube formation on matrigel matrix involving human endothelial cells. Cytotoxic effect was evaluated by XTT test on endothelial cells as a model of angiogenesis versus a panel of human cancer and normal cell lines. Basically the extracts did not show acute cytotoxicity. Morphology examination of endothelial cells indicated induction of autophagy characterized by formation of plenty of cytoplasmic vacuoles. The extracts were found to work by decreasing expression of vascular endothelial growth factor in endothelial cells.
  13. Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM
    Phytother Res, 2013 Oct;27(10):1439-56.
    PMID: 23281145 DOI: 10.1002/ptr.4897
    Coriander (Coriandrum sativum L.), a herbal plant, belonging to the family Apiceae, is valued for its culinary and medicinal uses. All parts of this herb are in use as flavoring agent and/or as traditional remedies for the treatment of different disorders in the folk medicine systems of different civilizations. The plant is a potential source of lipids (rich in petroselinic acid) and an essential oil (high in linalool) isolated from the seeds and the aerial parts. Due to the presence of a multitude of bioactives, a wide array of pharmacological activities have been ascribed to different parts of this herb, which include anti-microbial, anti-oxidant, anti-diabetic, anxiolytic, anti-epileptic, anti-depressant, anti-mutagenic, anti-inflammatory, anti-dyslipidemic, anti-hypertensive, neuro-protective and diuretic. Interestingly, coriander also possessed lead-detoxifying potential. This review focuses on the medicinal uses, detailed phytochemistry, and the biological activities of this valuable herb to explore its potential uses as a functional food for the nutraceutical industry.
  14. Taha M, Ismail NH, Jaafar FM, Khan KM, Yousuf S
    PMID: 23476582 DOI: 10.1107/S1600536813004388
    In the title benzoyl-hydrazide derivative, C17H18N2O, the dihedral angle between the benzene rings is 88.45 (8)° and the azomethine double bond adopts an E conformation. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds, forming a chain along the b axis.
  15. Salar U, Khan KM, Chigurupati S, Syed S, Vijayabalan S, Wadood A, et al.
    Med Chem, 2019;15(1):87-101.
    PMID: 30179139 DOI: 10.2174/1573406414666180903162243
    BACKGROUND: Despite many side effects associated, there are many drugs which are being clinically used for the treatment of type-II diabetes mellitus (DM). In this scenario, there is still need to develop new therapeutic agents with more efficacy and less side effects. By keeping in mind the diverse spectrum of biological potential associated with coumarin and thiazole, a hybrid class based on these two heterocycles was synthesized.

    METHOD: Hydrazinyl thiazole substituted coumarins 4-20 were synthesized via two step reaction. First step was the acid catalyzed reaction of 3-formyl/acetyl coumarin derivatives with thiosemicarbazide to form thiosemicarbazone intermediates 1-3, followed by the reaction with different phenacyl bromides to afford products 4-20. All the synthetic analogs 4-20 were characterized by different spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemical assignment of the iminic double bond was carried out by the NOESY experiments. Elemental analysis was found in agreement with the calculated values.

    RESULTS: Compounds 4-20 were screened for α-amylase inhibitory activity and showed good activity in the range of IC50 = 1.829 ± 0.102-3.37 ± 0.17 µM as compared to standard acarbose (IC50 = 1.819 ± 0.19 µM). Compounds were also investigated for their DPPH and ABTS radical scavenging activities and displayed good radical scavenging potential. In addition to that molecular modelling study was conducted on all compounds to investigate the interaction details of compounds 4- 20 (ligands) with active site (receptor) of enzyme.

    CONCLUSION: The newly identified hybrid class may serve as potential lead candidates for the management of diabetes mellitus.

  16. Sami W, Alabdulwahhab KM, Ab Hamid MR, Alasbali TA, Alwadani FA, Ahmad MS
    PMID: 32019083 DOI: 10.3390/ijerph17030858
    Dietary management is considered as a major step in assessing a patient's knowledge related to nutritional aspects, treatment, and complications of diabetes. Diabetes patients frequently face difficulty in identifying the recommended diet, including its quality and quantity. In the Kingdom of Saudi Arabia (KSA), sedentary lifestyle, along with food choices and portion sizes, have increased considerably and this has resulted in the soaring risk of diabetes. In addition, there is paucity of literature focusing on the Dietary Knowledge (DK) of type 2 diabetics in KSA. The study aimed to assess and evaluate the DK of type 2 diabetics. An analytical cross-sectional study was conducted among 350 type 2 diabetics using a valid and reliable self-prepared questionnaire comprising of 21 questions. Results showed that type 2 diabetics had an overall poor DK (28.57%). Sub-group analysis further revealed that diabetes patients had poor knowledge related to the consumption of carbohydrates and food choices, whereas they had good knowledge related to lipids and fats, proteins and food types. The role of diet in controlling of diabetes is considered imperative, but still, diabetes patients are unaware how they should approach this issue. The patient empowerment approach can be used to counsel patients with a poor DK. Primary care physicians and dietitians should work together and carry out individualized, tailored and patient-centered dietary education sessions.
  17. Saeed SI, Aklilu E, Mohammedsalih KM, Adekola AA, Mergani AE, Mohamad M, et al.
    Biology (Basel), 2021 Sep 25;10(10).
    PMID: 34681057 DOI: 10.3390/biology10100958
    Staphylococcus aureus is an ubiquitous and versatile pathogen associated with a wide range of diseases. In animals, this bacterium is one of the causative agents of bovine mastitis, responsible for huge economic losses in the dairy industry. Besides the development of antibiotic resistance, the intracellular survival of S. aureus within udder cells has rendered many antibiotics ineffective, leading to therapeutic failure. Our study therefore aims to investigate the in vitro bactericidal activity of ikarugamycin (IKA) against intracellular S. aureus using a bovine mammary epithelial cells (Mac-T cells) infection model and determine the cytotoxic effect. Minimum inhibitory concentration (MIC) was used to determine the antibacterial activity of IKA, and Mac-T cells were infected with S. aureus using gentamicin protection assay. IKA intracellular antibacterial activity assays were used to determine the bactericidal activity of IKA against intracellular S. aureus. The cytotoxicity of IKA against Mac-T cells was evaluated using the resazurin assay. We showed that, S. aureus is susceptible to IKA with a MIC value of 0.6 μg/mL. IKA at 4 × MIC and 8 × MIC have bactericidal activity by reducing 3 and 5 logs10 CFU/mL of S. aureus in the first six-hour of treatment respectively. In addition, IKA demonstrated intracellular killing activity by killing 90% of intracellular S. aureus at 5 μg/mL. This level is comparatively lower than 9.2 μg/mL determined as the half-maximal inhibitory concentration (IC50) of IKA required to kill 50% of Mac-T cells, highlighting a lower concentration required for bactericidal effect compared to the cytotoxic effect. The study highlighted that importance of IKA as a potential antibiotic candidate to be explored for the in vivo efficacy in treating S. aureus mastitis.
  18. Aloufi KM, Gameraddin M, Alhazmi FH, Almazroui IS, Osman H, Khandaker MU
    Appl Radiat Isot, 2024 Nov 06;215:111583.
    PMID: 39522393 DOI: 10.1016/j.apradiso.2024.111583
    BACKGROUND: Nuclear medicine diagnostic and treatment procedures represent significant sources of ionizing radiation exposure for both staff and patients. Consequently, assessing and optimizing radiation doses are crucial to minimize potential side effects.

    AIM: This study seeks to evaluate the effective radiation doses associated with common diagnostic and treatment procedures, as well as propose diagnostic reference levels (DRLs), within two nuclear medicine centers in Madinah, Saudi Arabia.

    METHODOLOGY: Data from 445 patients were gathered from two nuclear medicine centers in the Madinah region of Saudi Arabia. The data were categorized based on the type of nuclear medicine (NM) procedure, the chemical composition of the administered radiopharmaceutical, as well as patient age and weight. Effective radiation doses for prevalent NM procedures were computed, and suggested DRLs were formulated.

    RESULTS: Effective radiation doses were analyzed for 16 adult and 2 pediatric NM procedures (divided into 8 groups). The effective radiation doses for adult diagnostic nuclear medicine procedures range from 0.05 mSv (Nanocoloid) to 29 mSv (67Ga-citrate). For pediatric procedures, the doses range from 0.80 mSv (5-year-old undergoing renal DTPA) to 1.6 mSv (1-year-old undergoing renal DMSA). Furthermore, DRL values were determined for both adult and pediatric NM procedures. The study's findings demonstrated a high degree of concordance between effective radiation doses and DRL values, aligning well with previously published research.

    CONCLUSION: While the effective radiation doses outlined in this study were generally within acceptable limits and consistent with prior research findings, optimizing radiation doses remains imperative, particularly for pediatric NM procedures.

  19. Gaeid KS, Ping HW, Khalid M, Masaoud A
    Sensors (Basel), 2012;12(4):4031-50.
    PMID: 22666016 DOI: 10.3390/s120404031
    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state.
  20. Saputra R, Walvekar R, Khalid M, Mubarak NM, Sillanpää M
    Chemosphere, 2021 Feb;265:129033.
    PMID: 33250228 DOI: 10.1016/j.chemosphere.2020.129033
    Vulcanized rubber, due to its superior mechanical properties, has long been used in various industries, especially automotive. The rubber industry has evolved and expanded over the years to meet the increasing global demands for tires. Today tires consist of about 19% natural rubber and 24% synthetic rubber, while plastic polymer and metal, filler and additives make up the rest. Over 1.6 billion new tires are produced annually and around 1 billion waste tires are generated. Tires are extensively designed with several complex processes to make them virtually indestructible. Since tire rubber does not decompose easily, their disposal at the end of service life creates a monumental environmental impact. However, waste tire rubber (WTR) consist of valuable rubber hydrocarbon, making its recovery or regeneration highly desirable. The conventional recovery method of WTR tends to produce undesirable products due to the destruction of the polymeric chain and exponentially degenerates the vulcanizates' physical properties. Since then, multiple devulcanization processes were introduced to effectively and selectively cleave vulcanizate's crosslinks while retaining the polymeric networks. Different devulcanization methods such as chemical, mechanical, irradiation, biological and their combinations that have been explored until now are reviewed here. Besides, an overview of the latest development of devulcanization by ionic liquids and deep eutectic solvents are also described. While such devulcanization technique provides new sustainability pathway(s) for WTR, the generated devulcanizate also possesses comparable physical properties to that of virgin products. This further opens the possibility of novel circular economic opportunities worldwide.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links