Displaying all 2 publications

Abstract:
Sort:
  1. Shehab M, Khader AT
    Curr Med Imaging, 2020;16(4):307-315.
    PMID: 32410534 DOI: 10.2174/1573405614666180905111128
    BACKGROUND: Cuckoo Search Algorithm (CSA) was introduced by Yang and Deb in 2009. It considers as one of the most successful in various fields compared with the metaheuristic algorithms. However, random selection is used in the original CSA which means there is no high chance for the best solution to select, also, losing the diversity.

    METHODS: In this paper, the Modified Cuckoo Search Algorithm (MCSA) is proposed to enhance the performance of CSA for unconstrained optimization problems. MCSA is focused on the default selection scheme of CSA (i.e. random selection) which is replaced with tournament selection. So, MCSA will increase the probability of better results and avoid the premature convergence. A set of benchmark functions is used to evaluate the performance of MCSA.

    RESULTS: The experimental results showed that the performance of MCSA outperformed standard CSA and the existing literature methods.

    CONCLUSION: The MCSA provides the diversity by using the tournament selection scheme because it gives the opportunity to all solutions to participate in the selection process.

  2. Abualigah LM, Hanandeh ES, Khader AT, Otair MA, Shandilya SK
    Curr Med Imaging, 2020;16(4):296-306.
    PMID: 32410533 DOI: 10.2174/1573405614666180903112541
    BACKGROUND: Considering the increasing volume of text document information on Internet pages, dealing with such a tremendous amount of knowledge becomes totally complex due to its large size. Text clustering is a common optimization problem used to manage a large amount of text information into a subset of comparable and coherent clusters.

    AIMS: This paper presents a novel local clustering technique, namely, β-hill climbing, to solve the problem of the text document clustering through modeling the β-hill climbing technique for partitioning the similar documents into the same cluster.

    METHODS: The β parameter is the primary innovation in β-hill climbing technique. It has been introduced in order to perform a balance between local and global search. Local search methods are successfully applied to solve the problem of the text document clustering such as; k-medoid and kmean techniques.

    RESULTS: Experiments were conducted on eight benchmark standard text datasets with different characteristics taken from the Laboratory of Computational Intelligence (LABIC). The results proved that the proposed β-hill climbing achieved better results in comparison with the original hill climbing technique in solving the text clustering problem.

    CONCLUSION: The performance of the text clustering is useful by adding the β operator to the hill climbing.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links