Displaying all 5 publications

Abstract:
Sort:
  1. Lee ZY, Ortiz-Reyes L, Lew CCH, Hasan MS, Ke L, Patel JJ, et al.
    Ann Intensive Care, 2023 Mar 07;13(1):14.
    PMID: 36882644 DOI: 10.1186/s13613-023-01116-x
    BACKGROUND: A recent landmark randomized controlled trial (RCT) in septic patients demonstrated an increased risk of death and persistent organ dysfunction with intravenous Vitamin C (IVVC) monotherapy, which represents a disparate result from previous systematic reviews and meta-analyses (SRMA). We performed an updated SRMA of IVVC monotherapy to summarize and explore heterogeneity across current trials and conduct trial sequential analysis (TSA) to guard against type-I or type-II statistical errors.

    METHODS: RCTs evaluating IVVC in adult critically ill patients were included. Four databases were searched from inception to 22 June 2022 without language restrictions. The primary outcome was overall mortality. Random effect meta-analysis was performed to estimate the pooled risk ratio. TSA for mortality was performed using the DerSimonian-Laird random effect model, alpha 5%, beta 10%, and relative risk reduction (RRR) of 30%, 25%, and 20%.

    RESULTS: We included 16 RCTs (n = 2130). IVVC monotherapy is associated with significant reduction in overall mortality [risk ratio (RR) 0.73, 95% confidence interval (CI) 0.60-0.89; p = 0.002; I2 = 42%]. This finding is supported by TSA using RRR of 30% and 25%, and sensitivity analysis using fixed-effect meta-analysis. However, the certainty of our mortality finding was rated low using GRADE due to the serious risk of bias and inconsistency. In a priori subgroup analyses, we found no differences between single vs multicenter, higher (≥ 10,000 mg/day) vs lower dose and sepsis vs non-sepsis trials. Post-hoc, we found no differences in subgroup analysis of earlier ( 4 days) vs shorter treatment duration, and low vs other risk of bias studies. IVVC may have the greatest benefit in trials that enrolled patients above (i.e., > 37.5%; RR 0.65, 95% CI 0.54-0.79) vs below (i.e., ≤ 37.5%; RR 0.89, 95% CI 0.68-1.16) median control group mortality (test for subgroup differences: p = 0.06), and TSA supported this.

    CONCLUSIONS: IVVC monotherapy may be associated with mortality benefits in critically ill patients, particularly in patients with a high risk of dying. Given the low certainty of evidence, this potentially life-saving therapy warrants further studies to identify the optimal timing, dosage, treatment duration, and patient population that will benefit most from IVVC monotherapy. PROSPERO Registration ID: CRD42022323880. Registered 7th May 2022.

  2. Lee ZY, Dresen E, Lew CCH, Bels J, Hill A, Hasan MS, et al.
    Crit Care, 2024 Jan 06;28(1):15.
    PMID: 38184658 DOI: 10.1186/s13054-023-04783-1
    BACKGROUND: A recent large multicentre trial found no difference in clinical outcomes but identified a possibility of increased mortality rates in patients with acute kidney injury (AKI) receiving higher protein. These alarming findings highlighted the urgent need to conduct an updated systematic review and meta-analysis to inform clinical practice.

    METHODS: From personal files, citation searching, and three databases searched up to 29-5-2023, we included randomized controlled trials (RCTs) of adult critically ill patients that compared higher vs lower protein delivery with similar energy delivery between groups and reported clinical and/or patient-centred outcomes. We conducted random-effect meta-analyses and subsequently trial sequential analyses (TSA) to control for type-1 and type-2 errors. The main subgroup analysis investigated studies with and without combined early physical rehabilitation intervention. A subgroup analysis of AKI vs no/not known AKI was also conducted.

    RESULTS: Twenty-three RCTs (n = 3303) with protein delivery of 1.49 ± 0.48 vs 0.92 ± 0.30 g/kg/d were included. Higher protein delivery was not associated with overall mortality (risk ratio [RR]: 0.99, 95% confidence interval [CI] 0.88-1.11; I2 = 0%; 21 studies; low certainty) and other clinical outcomes. In 2 small studies, higher protein combined with early physical rehabilitation showed a trend towards improved self-reported quality-of-life physical function measurements at day-90 (standardized mean difference 0.40, 95% CI - 0.04 to 0.84; I2 = 30%). In the AKI subgroup, higher protein delivery significantly increased mortality (RR 1.42, 95% CI 1.11-1.82; I2 = 0%; 3 studies; confirmed by TSA with high certainty, and the number needed to harm is 7). Higher protein delivery also significantly increased serum urea (mean difference 2.31 mmol/L, 95% CI 1.64-2.97; I2 = 0%; 7 studies).

    CONCLUSION: Higher, compared with lower protein delivery, does not appear to affect clinical outcomes in general critically ill patients but may increase mortality rates in patients with AKI. Further investigation of the combined early physical rehabilitation intervention in non-AKI patients is warranted.

    PROSPERO ID: CRD42023441059.

  3. Chen Y, Liu Z, Wang Q, Gao F, Xu H, Ke L, et al.
    Crit Care, 2024 Jan 20;28(1):26.
    PMID: 38245768 DOI: 10.1186/s13054-024-04813-6
    BACKGROUND AND AIMS: Exclusive enteral nutrition (EN) is often observed during the first week of ICU admission because of the extra costs and safety considerations for early parenteral nutrition. This study aimed to assess the association between nutrition intake and 28-day mortality in critically ill patients receiving exclusive EN.

    METHODS: This is a post hoc analysis of a cluster-randomized clinical trial that assesses the effect of implementing a feeding protocol on mortality in critically ill patients. Patients who stayed in the ICUs for at least 7 days and received exclusive EN were included in this analysis. Multivariable Cox hazard regression models and restricted cubic spline models were used to assess the relationship between the different doses of EN delivery and 28-day mortality. Subgroups with varying lactate levels at enrollment were additionally analyzed to address the potential confounding effect brought in by the presence of shock-related hypoperfusion.

    RESULTS: Overall, 1322 patients were included in the analysis. The median (interquartile range) daily energy and protein delivery during the first week of enrollment were 14.6 (10.3-19.6) kcal/kg and 0.6 (0.4-0.8) g/kg, respectively. An increase of 5 kcal/kg energy delivery was associated with a significant reduction (approximately 14%) in 28-day mortality (adjusted hazard ratio [HR] = 0.865, 95% confidence interval [CI]: 0.768-0.974, P = 0.016). For protein intake, a 0.2 g/kg increase was associated with a similar mortality reduction with an adjusted HR of 0.868 (95% CI 0.770-0.979). However, the benefits associated with enhanced nutrition delivery could be observed in patients with lactate concentration ≤ 2 mmol/L (adjusted HR = 0.804 (95% CI 0.674-0.960) for energy delivery and adjusted HR = 0.804 (95% CI 0.672-0.962) for protein delivery, respectively), but not in those > 2 mmol/L.

    CONCLUSIONS: During the first week of critical illness, enhanced nutrition delivery is associated with reduced mortality in critically ill patients receiving exclusive EN, only for those with lactate concentration ≤ 2 mmol/L.

    TRIAL REGISTRATION: ISRCTN12233792, registered on November 24, 2017.

  4. Stoppe C, Patel JJ, Zarbock A, Lee ZY, Rice TW, Mafrici B, et al.
    Crit Care, 2023 Oct 18;27(1):399.
    PMID: 37853490 DOI: 10.1186/s13054-023-04663-8
    BACKGROUND: Based on low-quality evidence, current nutrition guidelines recommend the delivery of high-dose protein in critically ill patients. The EFFORT Protein trial showed that higher protein dose is not associated with improved outcomes, whereas the effects in critically ill patients who developed acute kidney injury (AKI) need further evaluation. The overall aim is to evaluate the effects of high-dose protein in critically ill patients who developed different stages of AKI.

    METHODS: In this post hoc analysis of the EFFORT Protein trial, we investigated the effect of high versus usual protein dose (≥ 2.2 vs. ≤ 1.2 g/kg body weight/day) on time-to-discharge alive from the hospital (TTDA) and 60-day mortality and in different subgroups in critically ill patients with AKI as defined by the Kidney Disease Improving Global Outcomes (KDIGO) criteria within 7 days of ICU admission. The associations of protein dose with incidence and duration of kidney replacement therapy (KRT) were also investigated.

    RESULTS: Of the 1329 randomized patients, 312 developed AKI and were included in this analysis (163 in the high and 149 in the usual protein dose group). High protein was associated with a slower time-to-discharge alive from the hospital (TTDA) (hazard ratio 0.5, 95% CI 0.4-0.8) and higher 60-day mortality (relative risk 1.4 (95% CI 1.1-1.8). Effect modification was not statistically significant for any subgroup, and no subgroups suggested a beneficial effect of higher protein, although the harmful effect of higher protein target appeared to disappear in patients who received kidney replacement therapy (KRT). Protein dose was not significantly associated with the incidence of AKI and KRT or duration of KRT.

    CONCLUSIONS: In critically ill patients with AKI, high protein may be associated with worse outcomes in all AKI stages. Recommendation of higher protein dosing in AKI patients should be carefully re-evaluated to avoid potential harmful effects especially in patients who were not treated with KRT.

    TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT03160547) on May 17th 2017.

  5. Lv C, Zhou L, Zhou Y, Lew CCH, Lee ZY, Hasan MS, et al.
    Burns Trauma, 2024;12:tkae027.
    PMID: 39049866 DOI: 10.1093/burnst/tkae027
    BACKGROUND: There is controversy over the optimal early protein delivery in critically ill patients with acute kidney injury (AKI). This study aims to evaluate whether the association between early protein delivery and 28-day mortality was impacted by the presence of AKI in critically ill patients.

    METHODS: This is a post hoc analysis of data from a multicenter cluster-randomised controlled trial enrolling newly admitted critically ill patients (n = 2772). Participants without chronic kidney disease and with complete data concerning baseline renal function were included in this study. The primary outcome was 28-day mortality. Cox proportional hazards models were used to analyze the association between early protein delivery, reflected by mean protein delivery from day 3-5 after enrollment, 28-day mortality and whether baseline AKI stages interacted with this association.

    RESULTS: Overall, 2552 patients were included, among whom 567 (22.2%) had AKI at enrollment (111 stage I, 87 stage II, 369 stage III). Mean early protein delivery was 0.60 ± 0.38 g/kg/day among the study patients. In the overall study cohort, each 0.1 g/kg/day increase in protein delivery was associated with a 5% reduction in 28-day mortality[hazard ratio (HR) = 0.95; 95% confidence interval (CI) 0.92-0.98, p 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links