Crude extracts (methanol) of various parts, viz. the leaves, fruits, roots, stem and trunk bark, of Garcinia atroviridis were screened for antimicrobial, cytotoxic, brine shrimp toxic, antitumour-promoting and antioxidant activities. The crude extracts exhibited predominantly antibacterial activity with the root extract showing the strongest inhibition against the test bacteria at a minimum inhibitory dose (MID) of 15.6 microg/disc. Although all the extracts failed to inhibit the growth of most of the test fungi, significant antifungal activity against Cladosporium herbarum was exhibited by most notably the fruit (MID: 100 microg), and the leaf (MID: 400 microg) extracts. None of the extracts were significantly cytotoxic, and lethal towards brine shrimps. The root, leaf, trunk and stem bark extracts (except for the fruits) showed strong antioxidant activity exceeding that of the standard antioxidant, alpha-tocopherol. Antitumour-promoting activity (>95% inhibition) was shown by the fruit, leaf, stem and trunk bark extracts.
Two new garcinia acid derivatives, 2-(butoxycarbonylmethyl)-3-butoxycarbonyl-2-hydroxy-3-propanolide and 1',1"-dibutyl methyl hydroxycitrate, were isolated from the fruits of Garcinia atroviridis guided by TLC bioautography against the fungus Cladosporium herbarum. The structures of these compounds were established by spectral analysis. The former compound represents a unique beta-lactone structure and the latter compound is most likely an artefact of garcinia acid (= hydroxycitric acid). Both compounds showed selective antifungal activity comparable to that of cycloheximide (MID: 0.5 microg/spot) only against C herbarum at the MIDs of 0.4 and 0.8 microg/spot but were inactive against bacteria (Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli), other fungi (Alternaria sp., Fusarium moniliforme and Aspergillus ochraceous) including the yeast Candida albicans.
The cytotoxicity of goniothalamin was found to be strong towards both cancerous (HGC-27, MCF-7, PANC-1, HeLa), and non-cancerous (3T3) cell lines, especially in cases of dividing cells. Drug exposure studies indicated that the cytotoxic action of goniothalamin was time- and dose-dependent. At the ultrastructural level, goniothalamin-induced cytotoxicity revealed a necrotic mode of cell death towards MCF-7 cells.