OBJECTIVE: This study aims to evaluate efficacy of using a bismuth breast shield and optimized scanning parameter to reduce breast absorbed doses from CT thorax examination.
METHODS: Five protocols comprising the standard CT thorax clinical protocol (CP1) and four modified protocols (CP2 to CP5) were applied in anthropomorphic phantom scans. The phantom was configured as a female by placing a breast component on the chest. The breast component was divided into four quadrants, where 2 thermoluminescence dosimeters (TLD-100) were inserted into each quadrant to measure the absorbed dose. The bismuth shield was placed over the breast component during CP4 and CP5 scans.
RESULTS: The pattern of absorbed doses in each breast and quadrant were approximately the same for all protocols, where the 4th quadrant > 3rd quadrant > 2nd quadrant > 1st quadrant. The mean absorbed dose value in CP3 was reduced to almost 34% of CP1's mean absorbed dose. It was reduced even lower to 15% of CP1's mean absorbed dose when the breast shield was used in CP5.
CONCLUSION: This study showed that CT radiation exposure on the breast could be reduced by using a bismuth shield and low tube potential protocol without compromising the image quality.
AIM: The purpose of this study is to perform a systematic review of the efficacy of Post-Mortem Computed Tomography (PMCT) scan compared with conventional autopsies gleaned from literature published in English between the year 2009 and 2016.
METHODOLOGY: A literature search was conducted in three databases, namely PubMed, MEDLINE, and Scopus. A total of 387 articles were retrieved, but only 21 studies were accepted after meeting the review criteria. Data, such as the number of victims, the number of radiologists and forensic pathologists involved, causes of death, and additional and missed diagnoses in PMCT scans were tabulated and analysed by two independent reviewers.
RESULTS: Compared with the conventional autopsy, the accuracy of PMCT scans in detecting injuries and causes of death was observed to range between 20% and 80%. The analysis also showed that PMCT had more advantages in detecting fractures, fluid in airways, gas in internal organs, major hemorrhages, fatty liver, stones, and bullet fragments. Despite its benefits, PMCT also could miss certain important lesion in a certain region such as cardiovascular injuries and minor vascular injuries.
CONCLUSIONS: This systematic review suggests that PMCT can replace most of the conventional autopsy in specific cases and is also a good complementary tool in most cases.
METHODS: Images of 31 adult patients who underwent CTPA examinations in our institution from March to April 2019 were retrospectively collected. Other data, such as scanning parameters, radiation dose and body habitus information from the subjects were also recorded. Six different levels of IR were applied to the volume data of the subjects. Five circles of the region of interest (ROI) were drawn in five different arteries namely, pulmonary trunk, right pulmonary artery, left pulmonary artery, ascending aorta and descending aorta. The mean Signal-to-noise ratio (SNR) was obtained, and the FOM was calculated in a fraction of the SNR2 divided by volume-weighted CT dose index (CTDIvol) and SNR2 divided by the size-specific dose estimates (SSDE).
RESULTS: Overall, we observed that the mean value of CTDIvol and SSDE were 13.79±7.72 mGy and 17.25±8.92 mGy, respectively. Notably, SNR values significantly increase with increase of the IR level (p
METHODS: MGD was calculated using the Dance formula.
RESULTS: The average MGD was 0.96 ± 0.39 mGy for mediolateral oblique (MLO) views and 0.81 ± 0.33 mGy for craniocaudal (CC) views. Weak inverse correlations were found between age and organ dose (OD) for both views, while a direct relationship was observed between breast thickness and entrance skin dose (ESD). In adjusted models, ESD was strongly associated with MGD (β = 1.04, 95% CI: 0.97, 1.09), while OD showed a moderate association (β = 0.44, 95% CI: 0.40, 0.49). Significant variations in ESD, OD, and MGD were noted across age groups and breast thicknesses.
CONCLUSIONS: Lower MGD indicates reduced radiation exposure risk, while higher MGD in MLO views suggests improved imaging quality. Monitoring and optimizing MGD are essential for enhancing patient safety and screening efficacy.
OBJECTIVE: The effects of single targeted 2 Gy and 8 Gy gamma-ray irradiations on the immune cell population (lymphocytes, B-cells, T-cells, neutrophils, eosinophils, and macrophages) in EMT6 mouse-bearing tumour models was investigated.
METHODS: The effects of both irradiation doses in early (96 hours) and acute phase (5 to 11 days) post-irradiation on immune parameters were monitored in blood circulation and TME using flow cytometry. Simultaneously, selected cytokines related to immune cells within the TME were measured using multiplex ELISA.
RESULTS: A temporary reduction in systemic total white blood count (TWBC) resulted from an early phase (96 hours) of gamma-ray irradiation at 2 Gy and 8 Gy compared to sham control group. No difference was obtained in the acute phase. Neutrophils dominated among other immune cells in TME in sham control group. Eosinophils in TME was significantly increased after 8 Gy treatment in acute phase compared to sham control (p< 0.005). Furthermore, the increment of tumour necrosis (TNF)-α, eotaxin and interleukin (IL)-7 (p< 0.05) in both treatment groups and phases were associated with anti-tumour activities within TME by gamma-ray irradiation.
CONCLUSION: The temporary changes in immune cell populations within systemic circulation and TME induced by different doses of gamma-ray irradiation correlated with suppression of several pro-tumorigenic cytokines in mouse-bearing EMT6 tumour models.