Displaying all 2 publications

Abstract:
Sort:
  1. Shafii NZ, Saudi ASM, Pang JC, Abu IF, Sapawe N, Kamarudin MKA, et al.
    Heliyon, 2019 Oct;5(10):e02534.
    PMID: 31667387 DOI: 10.1016/j.heliyon.2019.e02534
    There has been a growing concern on the rising of environmental issues in Malaysia over the last decade. Many environmental studies conducted in this country began to utilise the chemometrics techniques to overcome the limitation in the environmental monitoring studies. Chemometrics becomes an important tool in environmental fields to evaluate the relationship of various environmental variables particularly in a large and complex database. The review aimed to analyse and summarize the current evidences and limitations on the application of chemometrics techniques in the environmental studies in Malaysia. The study performed a comprehensive review of relevant scientific journals concerning on the major environmental issues in the country, published between 2013 and 2017. A total of 29 papers which focused on the environmental issues were reviewed. Available evidences suggested that chemometrics techniques have a greater accuracy, flexibility and efficiency to be applied in environmental modelling. It also reported that chemometrics techniques are more practical for cost effective and time management in sampling and monitoring purposes. However, chemometrics is relatively new in environmental field in Malaysia and various scopes need to be considered in the future as the current studies focused on very limited number of major environmental issues. Overall, chemometrics techniques have a lot of advantages in solving environmental problems. The development of chemometrics in environmental studies in the country is necessary to advance understanding, thus able to produce more significant impacts towards the effective environmental management.
  2. Kamarudin MKA, Toriman ME, Abd Wahab N, Abu Samah MA, Abdul Maulud KN, Mohamad Hamzah F, et al.
    Heliyon, 2023 Nov;9(11):e21573.
    PMID: 38058642 DOI: 10.1016/j.heliyon.2023.e21573
    The climate, geomorphological changes, and hydrological elements that have occurred have all influenced future flood episodes by increasing the likelihood and intensity of extreme weather occurrences like extreme precipitation events. River bank erosion is a natural geomorphic process that occurs in all channels. As modifications of sizes and channel shapes are made to transport the discharge, sediment abounds from the stream catchment, and floods are triggered dramatically. The aim of this study is to analyze the flood-sensitive regions along the Pahang River Basin and determine how climate and river changes would have an impact on flooding based on hydrometeorological data and information on river characteristics. The study is divided into three stages, namely the upstream, middle stream, and downstream of the Pahang River. The main primary hydrometeorological data and river characteristics, such as Sinuosity Index, Dominant Slope Range and Entrenchment Ratio collected as important inputs in the statistical analysis process. The statistical analyses, namely HACA, PCA, and Linear Regression applied in river classification. The result showed that the middle stream and downstream areas demonstrated the worst flooding affected by anthropogenic and hydrological factors. Rainfall distribution is one of the factors that contributed to the flood disaster. There are strong correlations between the Sinuosity Index (SI) and water level, which indicates that changes occurred at both planform and stream classification. The best management practices towards sustainability are based on the application of the outcomes that have been obtained after the analysis of Pahang River planform changes, Pahang River geometry, and the local rainfall pattern in the Pahang River Basin.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links