In 1990 the Institute for Medical Research carried out a serosurvey in the state of Kelantan to study the age stratified immune prevalence rates for measles and poliomyelitis. Our findings indicate that 981 out of 1,097 (89%) of the population screened had measles antibodies and more than 90% (366 out of 400) had antibodies to all three serotypes of poliovirus. The susceptible group for measles was infants below one year of age, of whom 53.3% (8/15) did not have measles antibody. Of 400 subjects, 125 (31.3%) who were either incompletely vaccinated or had not been vaccinated against poliomyelitis, had polio neutralizing antibodies to all three poliovirus serotypes, suggesting herd immunity in the population. No high risk age group could be identified for poliomyelitis.
This research optimized the adsorption performance of rice husk char (RHC4) for copper (Cu(II)) from an aqueous solution. Various physicochemical analyses such as Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM), carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, Brunauer-Emmett-Teller (BET) surface area analysis, bulk density (g/mL), ash content (%), pH, and pHZPC were performed to determine the characteristics of RHC4. The effects of operating variables such as the influences of aqueous pH, contact time, Cu(II) concentration, and doses of RHC4 on adsorption were studied. The maximum adsorption was achieved at 120 min of contact time, pH 6, and at 8 g/L of RHC4 dose. The prediction of percentage Cu(II) adsorption was investigated via an artificial neural network (ANN). The Fletcher-Reeves conjugate gradient backpropagation (BP) algorithm was the best fit among all of the tested algorithms (mean squared error (MSE) of 3.84 and R2 of 0.989). The pseudo-second-order kinetic model fitted well with the experimental data, thus indicating chemical adsorption. The intraparticle analysis showed that the adsorption process proceeded by boundary layer adsorption initially and by intraparticle diffusion at the later stage. The Langmuir and Freundlich isotherm models interpreted well the adsorption capacity and intensity. The thermodynamic parameters indicated that the adsorption of Cu(II) by RHC4 was spontaneous. The RHC4 adsorption capacity is comparable to other agricultural material-based adsorbents, making RHC4 competent for Cu(II) removal from wastewater.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of two or more fused benzene rings and abundantly found in mixed-use areas. Mixed-use areas consist of dense population, urbanization, industrial and agricultural activities. River pollution are common in mixed-use areas and 98% of Malaysia's fresh water supply originates from surface water. The biological degradation, adsorption and advanced oxidation process were documented as the available PAHs treatment for water. To date, the application of the photo-Fenton oxidation process has been reported for the treatment of PAHs from contaminated soil (review paper), landfill leachate, municipal solid waste leachate, sanitary landfill leachate, aniline wastewater, ammunition wastewater and saline aqueous solutions. As for potable water, the application of Fenton reagent was aided with photo treatment or electrolysis not focusing on PAHs removal. •The presented MethodsX was conducted for PAHs degradation analysis in potable water samples using photo-Fenton oxidation process.•The designed reactor for batch experiment is presented.•The batch experiment consists of parameters like concentration of 17 USEPA-PAHs in the prepared aqueous solution (fixed variable), reaction time, pH and molarity ratio of hydrogen peroxide (H2O2): ferrous sulfate (FeSO4).
Soil requires load bearing impact assessment for stability. Therefore, this study aims to utilize the multi-channel analysis surface wave (MASW) for soil subsurface investigation and profiling around Peninsular Malaysia. The standard penetration test (SPT) was conducted for comparison between factual N-value and computed N-value from shear wave velocity (Vs ) obtained from MASW using the Imai and Tonouchi equation. The correlation coefficient (R) and coefficient of determination, (R2 ), showed strong relationship between factual N-value and computed N-value. The model of Vs and factual N-value data distribution is non-normal but the analyzed relationship shows a significant level of p-value < 0.05. The R2 for each location of Vs -N-value relationship are ranging from 0.5 to 0.9.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of benzene rings. The objective of this research was to identify the optimum condition for the degradation of PAHs contaminated water using photo-Fenton oxidation process via response surface methodology (RSM). Aqueous solution was prepared and potable water samples were collected from water treatment plants in Perak Tengah, Perak, Malaysia in September 2016. The reaction time, pH, molarity of H2O2 and FeSO4 were analyzed followed by RSM using aqueous solution. A five level central composite design with quadratic model was used to evaluate the effects and interactions of these parameters. The response variable was the percentage of total organic carbon (TOC) removal. PAHs quantification was done using gas chromatography mass spectrometry analysis. The regression line fitted well with the data with R2 value of 0.9757. The lack of fit test gives the highest value of Sum of Squares (15,666.64) with probability F value 0.0001 showing significant quadratic model. The optimum conditions were established corresponding to the percentage of TOC removal. The PAHs removal efficiency for potable water samples ranged from 76.4% to 91% following the first order of kinetic rates with R2 values of >0.95. Conventional water treatment techniques are not effective for PAHs removal. Thus, advanced oxidation processes may be considered as an alternative to conventional water treatment techniques in Malaysia and other developing countries.
Coal combustion by-products (CCPs) (i.e. fly (FA) and bottom (BA) ashes) generated by power plants contain heavy metals. This research presents leaching properties of coal ashes (FA and BA) collected from Jimah coal-fired power station, Port Dickson, Negeri Sembilan using USEPA standard methods namely toxicity characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP). Heavy metals like lead (Pb), zinc (Zn), copper (Cu) and arsenic (As) were quantified using atomic absorption spectrometer (AAS). The leached of heavy metals fluxes were Cu < Zn < Pb < As. As leached the most whilst indicating of possible contamination from As. Overall, the ranges of leached concentration were adhered to permissible limits of hazardous waste criteria for metal (Pb and As) and industrial effluent (Zn and Cu). The presented data has potential reuse as reference for the coal ash concrete mixed design application in construction industries.
The potassium (K) and sodium (Na) elements in banana are needed for hydration reaction that can enhance the strength properties of concrete. This research aims (a) to determine the material engineering properties of banana skin ash (BSA) and concrete containing BSA, (b) to measure the strength enhancement of concrete due to BSA, and (c) to identify optimal application of BSA as supplementary cement materials (SCM) in concrete. The BSA characterization were assessed through X-ray fluorescence (XRF) and Blaine's air permeability. The workability, compressive strength, and microstructures of concrete containing BSA were analysed using slump test, universal testing machine (UTM) and scanning electron microscope (SEM). A total of 15 oxides and 19 non-oxides elements were identified in BSA with K (43.1%) the highest and Na was not detected. At 20 g of mass, the BSA had a higher bulk density (198.43 ± 0.00 cm3) than ordinary Portland cement (OPC) (36.32 ± 0.00 cm3) indicating availability of large surface area for water absorption. The concrete workability was reduced with the presence of BSA (0% BSA: > 100 mm, 1% BSA: 19 ± 1.0 mm, 2%: 15 ± 0.0 mm, 3% BSA: 10 ± 0.0 mm). The compressive strength increased with the number of curing days. The concrete microstructures were improved; interfacial transition zones (ITZ) decreased with an increase of BSA. The optimal percentage of BSA obtained was at 1.25%. The established model showed significant model terms (Sum of Squares = 260.60, F value = 69.84) with probability of 0.01% for the F-value to occur due to noise. The established model is useful for application in construction industries.
Perak River basin is in Perak state of Peninsular Malaysia. In this research, the river stretch serves as water intake for domestic, agricultural and industrial purposes in Perak Tengah, Hilir Perak and Manjung regions. It is located in mixed use area whilst exposing the river to anthropogenic elements. The sampling locations were conducted at selected points of Perak River namely Tanjung Belanja Bridge (TBB), Water Treatment Plant Parit (WTPP), Parit Town discharge (PTD), Water Treatment Plant Senin (WTPS) and Water Treatment Plant Kepayang (WTPK). The existence of aromatic hydrocarbons in freshwater samples was pre-assessed via qualification analysis; specific ultraviolet absorbance (SUVA254) method at 254 nm of wavelength. The SUVA dataset were 48.38 L/mg-m (TBB), 50.54 L/mg-m (WTPP), 8.05 L/mg-m (PTD), 85.75 L/mg-m (WTPS) and 217.39 L/mg-m (WTPK). The SUVA254 values of fresh water at the river basin have exceeded the water quality standards value equivalent to 2.0 L/mg-m permitted by the Environmental Protection Agency of United States. The exceeding values were an indication of a large portion of aromatic compounds in the water. Qualification analyses evident the existence of water pollutants at treacherous concentrations for public health in freshwater samples of Perak River basin. Thus, this research has presented important findings towards further research and countermeasure for a better alternative of water treatment in Malaysia.
Despite growing evidence of increased saturated and trans fat contents in street foods, little is known about their fatty acid (FA) compositions. This study aimed to analyse the saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and trans fatty acids (TFAs) content of 70 selected and most commonly available street foods in Malaysia. The street foods were categorised into main meals, snacks, and desserts. TFAs were not detected in any of the street foods. Descriptively, all three categories mainly contained SFAs, followed by MUFAs, and PUFAs. However, the one-way ANOVA testing showed that the differences between each category were insignificant (p > 0.05), and each FA was not significantly different (p > 0.05) from one to another. Nearly half of the deep-fried street foods contained medium to high SFAs content (1.7 g/100 g-24.3 g/100 g), while the MUFAs were also high (32.0-44.4%). The Chi-square test of association showed that the type of preparation methods (low or high fat) used was significantly associated (p < 0.05) with the number of SFAs. These findings provide valuable information about fat composition in local street foods for the Malaysian Food Composition Database and highlight the urgency to improve nutritional composition.